[Existence de résolutions pures et libres equivariantes]
Let be a polynomial ring in variables and let be a strictly increasing sequence of integers. Boij and Söderberg conjectured the existence of graded -modules of finite length having pure free resolution of type in the sense that for the -th syzygy module of has generators only in degree .
This paper provides a construction, in characteristic zero, of modules with this property that are also -equivariant. Moreover, the construction works over rings of the form where is a polynomial ring as above and is an exterior algebra.
Soit un anneau polynomial à variables et soit une suite strictement croissante de nombres entiers. Boij et Söderberg ont conjecturé l’existence de -modules gradués de longueur finie ayant une résolution pure et libre de type dans le sens ou pour les générateurs du -ème module de syzygies de sont uniquement de degré .
Cet article présente une construction, en caractéristique zéro, de modules avec cette propriété qui sont aussi -équivariants. La construction fonctionne aussi pour les anneaux de la forme où est un anneau polynomial comme ci-dessus et est une algèbre extérieure.
Keywords: Pure resolution, equivariant resolution, Betti diagram, Boij-Söderberg theory, Pieri map, determinantal variety
Mots-clés : résolution pure, résolution équivariante, diagramme de Betti, théorie de Boij-Söderberg
Eisenbud, David 1 ; Fløystad, Gunnar 2 ; Weyman, Jerzy 3
@article{AIF_2011__61_3_905_0,
author = {Eisenbud, David and Fl{\o}ystad, Gunnar and Weyman, Jerzy},
title = {The existence of equivariant pure free resolutions},
journal = {Annales de l'Institut Fourier},
pages = {905--926},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {61},
number = {3},
year = {2011},
doi = {10.5802/aif.2632},
mrnumber = {2918721},
zbl = {1239.13023},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2632/}
}
TY - JOUR AU - Eisenbud, David AU - Fløystad, Gunnar AU - Weyman, Jerzy TI - The existence of equivariant pure free resolutions JO - Annales de l'Institut Fourier PY - 2011 SP - 905 EP - 926 VL - 61 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2632/ DO - 10.5802/aif.2632 LA - en ID - AIF_2011__61_3_905_0 ER -
%0 Journal Article %A Eisenbud, David %A Fløystad, Gunnar %A Weyman, Jerzy %T The existence of equivariant pure free resolutions %J Annales de l'Institut Fourier %D 2011 %P 905-926 %V 61 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2632/ %R 10.5802/aif.2632 %G en %F AIF_2011__61_3_905_0
Eisenbud, David; Fløystad, Gunnar; Weyman, Jerzy. The existence of equivariant pure free resolutions. Annales de l'Institut Fourier, Tome 61 (2011) no. 3, pp. 905-926. doi: 10.5802/aif.2632
[1] Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. in Math., Volume 64 (1987), pp. 118-175 | DOI | Zbl | MR
[2] Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture, Journal of the London Mathematical Society (2), Volume 79 (2008) no. 1, pp. 85-106 | DOI | Zbl | MR
[3] Generic free resolutions and a family of generically perfect ideals, Advances in Math., Volume 18 (1975) no. 3, pp. 245-301 | DOI | Zbl | MR
[4] Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension , Amer. J. Math., Volume 99 (1977) no. 3, pp. 447-485 | DOI | Zbl | MR
[5] A very simple proof of Bott’s theorem, Inventiones Mathematicae, Volume 34 (1976), pp. 271-272 | DOI | Zbl | MR
[6] Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Springer, 1995 | Zbl | MR
[7] Betti Numbers of Graded Modules and Cohomology of Vector Bundles, Journal of the American Mathematical Society, Volume 22 (2009) no. 3, pp. 859-888 | DOI | Zbl | MR
[8] Fitting’s Lemma for -graded modules, Trans. Am. Math. Soc., Volume 355 (2003), pp. 4451-4473 | DOI | Zbl | MR
[9] Exterior algebra resolutions arising from homogeneous bundles, Math. Scand., Volume 94 (2004) no. 2, pp. 191-201 | Zbl | MR
[10] The linear space of Betti diagrams of multigraded artinian modules, Mathematical Research Letters, Volume 17 (2010) no. 5, pp. 943-958 | MR | Zbl
[11] Representation Theory; a first course, Graduate Texts in Mathematics 129, Springer-Verlag, 1991 | Zbl | MR
[12] On the Betti numbers of finite pure and linear resolutions, Comm. Algebra, Volume 12 (1984) no. 13-14, pp. 1627-1646 | DOI | Zbl | MR
[13] A sequence of complexes associated with a matrix, J. London Math. Soc. (2), Volume 7 (1974), pp. 523-530 | DOI | Zbl | MR
[14] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford University Press, New York, 1995 (Second edition. With contributions by A. Zelevinsky) | Zbl | MR
[15] Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. des Hautes Études Sci. Publ. Math. (1973) no. 42, pp. 47-119 | DOI | Zbl | MR | Numdam | EuDML
[16] Pieri Resolutions for Classical Groups (arXiv:0907.4505) | Zbl
[17] Cohomology of vector bundles and syzygies, Cambridge University Press, Cambridge, 2003 | Zbl | MR
Cité par Sources :



