Contact Homology, Capacity and Non-Squeezing in 2n ×S 1 via Generating Functions
Annales de l'Institut Fourier, Volume 61 (2011) no. 1, p. 145-185
Starting from the work of Bhupal we extend to the contact case the Viterbo capacity and Traynor’s construction of symplectic homology. As an application we get a new proof of the Non-Squeezing Theorem of Eliashberg, Kim and Polterovich.
Inspirés par le travail de Bhupal, nous étendons à la géométrie de contact la notion de capacité de Viterbo ainsi que la construction, dûe à Traynor, d’homologie symplectique. Comme application, nous obtenons une démonstration alternative du Théorème de Non-Tassement d’Eliashberg, Kim et Polterovitch.
DOI : https://doi.org/10.5802/aif.2600
Classification:  53D35
Keywords: Contact non-squeezing, contact capacity, contact homology, orderability of contact manifolds, generating functions
@article{AIF_2011__61_1_145_0,
     author = {Sandon, Sheila},
     title = {Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {61},
     number = {1},
     year = {2011},
     pages = {145-185},
     doi = {10.5802/aif.2600},
     zbl = {1222.53091},
     mrnumber = {2828129},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2011__61_1_145_0}
}
Contact Homology, Capacity and Non-Squeezing in $\mathbb{R}^{2n}\times S^{1}$ via Generating Functions. Annales de l'Institut Fourier, Volume 61 (2011) no. 1, pp. 145-185. doi : 10.5802/aif.2600. https://aif.centre-mersenne.org/item/AIF_2011__61_1_145_0/

[1] Bhupal, M. Legendrian intersections in the 1-jet bundle, University of Warwick (1998) (Ph. D. Thesis)

[2] Bhupal, M. A partial order on the group of contactomorphisms of 2n+1 via generating functions, Turkish J. Math., Tome 25 (2001), pp. 125-135 | MR 1829083 | Zbl 1007.53067

[3] Biran, P.; Polterovich, L.; Salamon, D. Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J., Tome 119 (2003), pp. 65-118 | Article | MR 1991647 | Zbl 1034.53089

[4] Chaperon, M. Une idée du type “géodésiques brisées” pour les systémes hamiltoniens, C. R. Acad. Sci. Paris, Sér. I Math., Tome 298 (1984), pp. 293-296 | MR 765426 | Zbl 0576.58010

[5] Chaperon, M.; H. Hofer Et Al. On generating families, The Floer Memorial Volume, Birkhauser, Basel (Progr. Math.) Tome 133 (1995), pp. 283-296 | MR 1362831 | Zbl 0837.58003

[6] Chekanov, Y. Critical points of quasi-functions and generating families of Legendrian manifolds, Funct. Anal. Appl., Tome 30 (1996), pp. 118-128 | Article | MR 1402081 | Zbl 0873.58017

[7] Chekanov, Y.; Van Koert, O.; Schlenk, F. Minimal atlases of closed contact manifolds, arXiv:0807.3047

[8] Chekanov, Y.; Pushkar, P. Combinatorics of fronts of Legendrian links, and Arnold’s 4-conjectures, Russian Math. Surveys, Tome 60 (2005), pp. 95-149 | Article | MR 2145660 | Zbl 1085.57008

[9] Chernov, V.; Nemirovski, S. Legendrian links, causality, and the Low conjecture, arXiv:0810.5091v2

[10] Chernov, V.; Nemirovski, S. Non-negative Legendrian isotopy in ST * M, arXiv:0905.0983

[11] Cieliebak, K.; Ginzburg, V.; Kerman, E. Symplectic homology and periodic orbits near symplectic submanifolds, Comment. Math. Helv., Tome 79 (2004), pp. 554-581 | Article | MR 2081726 | Zbl 1073.53118

[12] Colin, V.; Ferrand, E.; Pushkar, P. Positive loops of Legendrian embeddings (2007) (preprint)

[13] Eiseman, P.; Lima, J.; Sabloff, J.; Traynor, L. A partial ordering on slices of planar Lagrangians, J. Fixed Point Theory Appl., Tome 3 (2008), pp. 431-447 | Article | MR 2434456 | Zbl 1149.53318

[14] Eliashberg, Y. New invariants of open symplectic and contact manifolds, J. Amer. Math. Soc., Tome 4 (1991), pp. 513-520 | Article | MR 1102580 | Zbl 0733.58011

[15] Eliashberg, Y.; Gromov, M. Lagrangian intersection theory : finite-dimensional approach, Geometry of differential equations, Amer. Math. Soc., Providence, RI (Amer. Math. Soc. Transl. Ser. 2) Tome 186 (1998) (p. 27–118, see also : Lagrangian intersections and the stable Morse theory Boll. Un. Mat. Ital., B(7) 11 suppl. (1997), p. 289–326) | MR 1732407 | Zbl 0919.58015

[16] Eliashberg, Y.; Kim, S. S.; Polterovich, L. Geometry of contact transformations and domains: orderability vs squeezing, Geom. and Topol., Tome 10 (2006), pp. 1635-1747 | Article | MR 2284048 | Zbl 1134.53044

[17] Eliashberg, Y.; Polterovich, L. Partially ordered groups and geometry of contact transformations, Geom. Funct. Anal., Tome 10 (2000), pp. 1448-1476 | Article | MR 1810748 | Zbl 0986.53036

[18] Ferrand, E.; Pushkar, P. Morse theory and global coexistence of singularities on wave fronts, J. London Math. Soc., Tome 74 (2006), pp. 527-544 | Article | MR 2269593 | Zbl 1113.57015

[19] Fuchs, D.; Rutherford, D. Generating families and Legendrian contact homology in the standard contact space, arXiv:0807.4277

[20] Geiges, H. An Introduction to Contact Topology, Cambridge University Press (2008) | MR 2397738 | Zbl 1153.53002

[21] Ginzburg, V.; Gürel, B. Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles, Duke Math. J., Tome 123 (2004), pp. 1-47 | Article | MR 2060021 | Zbl 1066.53138

[22] Givental, A. Nonlinear generalization of the Maslov index, Theory of singularities and its applications, Amer. Math. Soc., Providence, RI (Adv. Soviet Math.) Tome 1 (1990), pp. 71-103 | MR 1089671 | Zbl 0728.53024

[23] Givental, A.; H. Hofer Et Al. A symplectic fixed point theorem for toric manifolds, The Floer Memorial Volume, Birkhauser, Basel (Progr. Math.) Tome 133 (1995), pp. 445-481 | MR 1362837 | Zbl 0835.55001

[24] Gromov, M. Pseudoholomorphic curves in symplectic manifolds, Invent.Math., Tome 82 (1985), pp. 307-347 | Article | MR 809718 | Zbl 0592.53025

[25] Hermann, D. Inner and outer Hamiltonian capacities, Bull. Soc. Math. France, Tome 132 (2004), pp. 509-541 | Numdam | MR 2131902 | Zbl 1083.53083

[26] Hofer, H.; Zehnder, E. Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser (1994) | MR 1306732 | Zbl 0805.58003

[27] Hörmander, L. Fourier integral operators I, Acta Math., Tome 127 (1971), pp. 17-183 | Article | MR 388463 | Zbl 0212.46601

[28] Jordan, J.; Traynor, L. Generating family invariants for Legendrian links of unknots, Algebr. Geom. Topol., Tome 6 (2006), pp. 895-933 | Article | MR 2240920 | Zbl 1130.57018

[29] Laudenbach, F.; Sikorav, J. C. Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibre cotangent, Invent. Math., Tome 82 (1985), pp. 349-357 | Article | MR 809719 | Zbl 0592.58023

[30] Mcduff, D.; Salamon, D. Introduction to Symplectic Topology, Oxford University Press (1998) | MR 1698616 | Zbl 1066.53137

[31] Milinković, D. Morse homology for generating functions of Lagrangian submanifolds, Trans. Amer. Math. Soc., Tome 351 (1999), pp. 3953-3974 | Article | MR 1475690 | Zbl 0938.53043

[32] Sikorav, J. C. Sur les immersions lagrangiennes dans un fibré cotangent admettant une phase génératrice globale, C.R. Acad. Sci. Paris, Sér. I Math., Tome 302 (1986), pp. 119-122 | MR 830282 | Zbl 0602.58019

[33] Sikorav, J. C. Problemes d’intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv., Tome 62 (1987), pp. 62-73 | Article | MR 882965 | Zbl 0684.58015

[34] Théret, D. Utilisation des fonctions génératrices en géométrie symplectique globale, Université Denis Diderot (Paris 7) (1995) (Ph. D. Thesis)

[35] Théret, D. Rotation numbers of Hamiltonian isotopies in complex projective spaces, Duke Math. J., Tome 94 (1998), pp. 13-27 | Article | MR 1635892 | Zbl 0976.53093

[36] Théret, D. A complete proof of Viterbo’s uniqueness theorem on generating functions, Topology Appl., Tome 96 (1999), pp. 249-266 | Article | MR 1709692 | Zbl 0952.53037

[37] Traynor, L. Symplectic Homology via generating functions, Geom. Funct. Anal., Tome 4 (1994), pp. 718-748 | Article | MR 1302337 | Zbl 0822.58020

[38] Traynor, L. Generating Function Polynomials for Legendrian Links, Geom. and Topol., Tome 5 (2001), pp. 719-760 | Article | MR 1871403 | Zbl 1030.53086

[39] Viterbo, C. Functors and computations in Floer homology with applications, Part II (Preprint) | Zbl 0954.57015

[40] Viterbo, C. Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systémes hamiltoniens, Bull. Soc. Math. France, Tome 115 (1987), pp. 361-390 | Numdam | MR 926533 | Zbl 0639.58018

[41] Viterbo, C. Symplectic topology as the geometry of generating functions, Math. Ann., Tome 292 (1992), pp. 685-710 | Article | MR 1157321 | Zbl 0735.58019