The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations
[Les matrices spectrales des solitons de Toda et la solution fondamentale de versions discrètes de l'équation de la chaleur]
Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 1765-1788.

A l’aide de la théorie de Sato, on calcule la matrice spectrale de Stieltjes associée à une matrice de Jacobi doublement infinie, donnant lieu à une solution g-soliton du réseau de Toda. On utilise ce résultat pour donner un développement explicite de la solution fondamentale de versions discrètes de l’équation de la chaleur, en termes d’une série des q-déformations de Jackson des fonctions de Bessel. Pour les solitons dits de Askey-Wilson, ce développement se réduit à une somme finie.

The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda g-soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson’s q-Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.

DOI : 10.5802/aif.2140
Classification : 35Q51, 37K20, 39A13
Keywords: Heat kernel, Toda lattice hierarchy
Mot clés : noyau de la chaleur, réseau de Toda

Haine, Luc 1

1 Université catholique de Louvain, institut de mathématique pure et appliquée, chemin du Cyclotron 2, 1348 Louvain-la-Neuve (Belgique)
@article{AIF_2005__55_6_1765_0,
     author = {Haine, Luc},
     title = {The spectral matrices of {Toda} solitons and the fundamental solution of some discrete heat equations},
     journal = {Annales de l'Institut Fourier},
     pages = {1765--1788},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {6},
     year = {2005},
     doi = {10.5802/aif.2140},
     zbl = {1078.35101},
     mrnumber = {2187934},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2140/}
}
TY  - JOUR
AU  - Haine, Luc
TI  - The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 1765
EP  - 1788
VL  - 55
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2140/
DO  - 10.5802/aif.2140
LA  - en
ID  - AIF_2005__55_6_1765_0
ER  - 
%0 Journal Article
%A Haine, Luc
%T The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations
%J Annales de l'Institut Fourier
%D 2005
%P 1765-1788
%V 55
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.2140/
%R 10.5802/aif.2140
%G en
%F AIF_2005__55_6_1765_0
Haine, Luc. The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 1765-1788. doi : 10.5802/aif.2140. https://aif.centre-mersenne.org/articles/10.5802/aif.2140/

[1] M. Adler; J. Moser On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys., Volume 61 (1978), pp. 1-30 | DOI | MR | Zbl

[2] R. Askey; J. Wilson Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. (1985) no. 319 | MR | Zbl

[3] Yu. Berest; J. Harnad and A. Kasman ``Huygens' principle and the bispectral problem, The Bispectral Problem (CRM Proc. Lecture Notes), Volume 14 (1998), pp. 11-30 | Zbl

[4] Yu. Berest; A. P. Veselov Hadamard's problem and Coxeter groups: new examples of Huygens' equations, Funktsional. Anal. i Prilozhen. 28 (1) (1994), 3-15 (Russian); English transl., Funct. Anal. Appl., Volume 28 (1994) no. 1, pp. 3-12 | MR | Zbl

[5] Ju. M. Berezanskii Expansions in Eigenfunctions of Selfadjoint Operators (Transl. Math. Monographs), Volume 17 (1968) | Zbl

[6] O. A. Chalykh; A. P. Veselov Integrability and Huygens' principle on symmetric spaces, Commun. Math. Phys., Volume 178 (1996), pp. 311-338 | DOI | MR | Zbl

[7] O. A. Chalykh; M. V. Feigin; A. P. Veselov Multidimensional Baker-Akhiezer functions and Huygens' principle, Commun. Math. Phys., Volume 206 (1999), pp. 533-566 | DOI | MR | Zbl

[8] P. Deift; L. C. Li; C. Tomei Toda flows with infinitely many variables, J. Funct. Anal., Volume 64 (1985), pp. 358-402 | DOI | MR | Zbl

[9] P. Deift; E. Trubowitz Inverse scattering on the line, Comm. Pure Appl. Math., Volume 32 (1979), pp. 121-251 | DOI | MR | Zbl

[10] J. F. Van; Diejen; A. N. Kirillov Formulas for q-spherical functions using inverse scattering theory of reflectionless Jacobi operators, Commun. Math. Phys., Volume 210 (2000), pp. 335-369 | DOI | MR | Zbl

[11] B. A. Dubrovin; V. B. Matveev; S. P. Novikov Non-linear equations of Korteweg-de Vries type, finite-zone linear operators, and abelian varieties, Uspekhi Mat. Nauk. 31 (1) (1976), 55-136 (Russian); English transl., Russ. Math. Surveys, Volume 31 (1976) no. 1, pp. 59-146 | MR | Zbl

[12] J. J. Duistermaat; F. A. Grünbaum Differential equations in the spectral parameter, Commun. Math. Phys., Volume 103 (1986), pp. 177-240 | DOI | MR | Zbl

[13] H. Flaschka On the Toda lattice II - Inverse scattering solution, Progr. Theor. Phys., Volume 51 (1974) no. 3, pp. 703-716 | MR | Zbl

[14] G. Gasper; M. Rahman Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, 35, Cambridge University Press, 1990 | MR | Zbl

[15] F. A. Grünbaum; J. Harnad and A. Kasman Some bispectral musings, The Bispectral Problem (CRM Proc. Lecture Notes), Volume 14 (1998), pp. 31-45 | Zbl

[16] F. A. Grünbaum; J. Bustoz, M. E. H. Ismail and S. K. Suslov The bispectral problem: an overview, Special Functions 2000: Current Perspective and Future Directions (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.) (2001), pp. 129-140 | Zbl

[17] F. A. Grünbaum; L. Haine Some functions that generalize the Askey-Wilson polynomials, Commun. Math. Phys., Volume 184 (1997), pp. 173-202 | DOI | MR | Zbl

[18] F. A. Grünbaum; L. Haine Associated polynomials, spectral matrices and the bispectral problem, Meth. Appl. Anal., Volume 6 (1999) no. 2, pp. 209-224 | MR | Zbl

[19] F. A. Grünbaum; P. Iliev Heat kernel expansions on the integers, Math. Phys. Anal. Geom., Volume 5 (2002), pp. 183-200 | DOI | MR | Zbl

[20] L. Haine; V. B. Kuznetsov The q-hypergeometric equation, Askey-Wilson type solitons andrational curves with singularities, The Kowalevski Property (CRM Proc. Lecture Notes), Volume 32 (2002), pp. 69-91 | Zbl

[21] L. Haine; P. Iliev Commutative rings of difference operators and an adelic flag manifold, Internat. Math. Res. Notices, Volume 6 (2000), pp. 281-323 | MR | Zbl

[22] L. Haine; P. Iliev A rational analogue of the Krall polynomials, J. Phys. A: Math. Gen., Volume 34 (2001), pp. 2445-2457 | DOI | MR | Zbl

[23] L. Haine; P. Iliev Askey-Wilson type functions, with bound states The Ramanujan Journal (in press) | Zbl

[24] M. E. H. Ismail The basic Bessel functions and polynomials, SIAM J. Math. Anal., Volume 12 (1981), pp. 454-468 | DOI | MR | Zbl

[25] F. H. Jackson The application of basic numbers to Bessel's and Legendre's functions, Proc. London Math. Soc., Volume 2 (1905) no. 2, pp. 192-220 | JFM

[26] M. Kac Integration in Function Spaces and Some of Its Applications, Accademia Nazionale Dei Lincei Scuola Normale Superiore, Lezion, Pisa, 1980 | MR | Zbl

[27] I. M. Krichever Algebraic curves and nonlinear difference equations, Uspekhi Mat. Nauk 33 (1978), 215-216 (Russian); English transl., Volume 33 (1978), pp. 255-256 | MR | Zbl

[28] J. E. Lagnese; K. L. Stellmacher A method of generating classes of Huygens' operators, J. Math. Mech., Volume 17 (1967) no. 5, pp. 461-472 | MR | Zbl

[29] J. E. Lagnese A solution of Hadamard's problem for a restricted class of operators, Proc. Amer. Math. Soc., Volume 19 (1968), pp. 981-988 | MR | Zbl

[30] H. P. Mc; Kean; P. van Moerbeke The spectrum of Hill's equation, Inventiones Math., Volume 30 (1975), pp. 217-274 | DOI | MR | Zbl

[31] P. van Moerbeke; D. Mumford The spectrum of difference operators and algebraic curves, Acta Math., Volume 143 (1979), pp. 93-154 | DOI | MR | Zbl

[32] F. W. Nijhoff; O. A. Chalykh Bispectral rings of difference operators, Russ. Math. Surveys, Volume 54 (1999), pp. 644-645 | DOI | MR | Zbl

[33] R. Schimming An explicit expression for the Korteweg-de Vries hierarchy, Z. Anal. Anwendungen, Volume 7 (1988), pp. 203-214 | MR | Zbl

[34] G. Segal; G. Wilson Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math., Volume 61 (1985), pp. 5-65 | DOI | Numdam | MR | Zbl

[35] M. Toda Theory of Nonlinear Lattices, Springer Series in Solid-State Sciences, 20, Springer, Berlin, Heidelberg, New-York,, 1981 | MR | Zbl

[36] G. Wilson Bispectral commutative ordinary differential operators, J. Reine Angew. Math., Volume 442 (1993), pp. 177-204 | MR | Zbl

Cité par Sources :