Rational points on a subanalytic surface
Annales de l'Institut Fourier, Volume 55 (2005) no. 5, p. 1501-1516
Let X n be a compact subanalytic surface. This paper shows that, in a suitable sense, there are very few rational points of X that do not lie on some connected semialgebraic curve contained in X.
Soit X n une surface sous-analytique compacte. Cet article démontre qu’en un sens convenable, il y a très peu de points rationnels de X qui ne se trouvent pas sur une courbe semi-algébrique connexe contenue dans X.
DOI : https://doi.org/10.5802/aif.2131
Classification:  11D99,  11J99
Keywords: Subanalytic set, rational point
@article{AIF_2005__55_5_1501_0,
     author = {Pila, Jonathan},
     title = {Rational points on a subanalytic surface},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {55},
     number = {5},
     year = {2005},
     pages = {1501-1516},
     doi = {10.5802/aif.2131},
     mrnumber = {2172272},
     zbl = {02210717},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2005__55_5_1501_0}
}
Pila, Jonathan. Rational points on a subanalytic surface. Annales de l'Institut Fourier, Volume 55 (2005) no. 5, pp. 1501-1516. doi : 10.5802/aif.2131. https://aif.centre-mersenne.org/item/AIF_2005__55_5_1501_0/

[1] E. Bierstone; P.D. Milman Semianalytic and subanalytic sets, Pub. Math. I.H.E.S, Tome 67 (1988), pp. 5-42 | Numdam | MR 972342 | Zbl 0674.32002

[2] E. Bombieri email, 9 March (2003)

[3] E. Bombieri; J. Pila The number of integral points on arcs and ovals, Duke Math. J., Tome 59 (1989), pp. 337-357 | Article | MR 1016893 | Zbl 0718.11048

[4] D. R. Heath-Brown The density of rational points on curves and surfaces, Ann. Math., Tome 155 (2002), pp. 553-595 | Article | MR 1906595 | Zbl 1039.11044

[5] M. Hindry; J. H. Silverman Diophantine geometry: an introduction, Springer, New York, Graduate Texts in Mathematics, Tome 201 (2000) | MR 1745599 | Zbl 0948.11023

[6] V. Jarnik Über die Gitterpunkte auf konvexen Curven, Math. Z., Tome 24 (1926), pp. 500-518 | Article | JFM 51.0153.01 | MR 1544776

[7] S. Lang Number theory III: diophantine geometry, Springer, Berlin, Encyclopedia of Mathematical Sciences, Tome 60 (1991) | MR 1112552 | Zbl 0744.14012

[8] J. Pila Geometric postulation of a smooth function and the number of rational points, Duke Math. J., Tome 63 (1991), pp. 449-463 | MR 1115117 | Zbl 0763.11025

[9] J. Pila Density of integer points on plane algebraic curves, International Mathematics Research Notices (1996), pp. 903-912 | MR 1420555 | Zbl 0973.11085

[10] J. Pila Integer points on the dilation of a subanalytic surface, Quart. J. Math., Tome 55 (2004), pp. 207-223 | Article | MR 2068319 | Zbl 02113377

[11] J. Pila Note on the rational points of a pfaff curve (submitted)

[12] W. M. Schmidt Integer points on curves and surfaces, Monatsh. Math., Tome 99 (1985), pp. 45-72 | Article | MR 778171 | Zbl 0551.10026

[13] H. P. F. Swinnerton-Dyer The number of lattice points on a convex curve, J. Number Theory, Tome 6 (1974), pp. 128-135 | Article | MR 337857 | Zbl 0285.10020

[14] A. Wilkie Diophantine properties of sets definable in o-minimal structures, J. Symb. Logic, Tome 69 (2004), pp. 851-861 | Article | MR 2078926 | Zbl 02199962