Quantization and Morita equivalence for constant Dirac structures on tori  [ Quantification et équivalence de Morita des structures de Dirac constantes sur les tores ]
Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1565-1580.

Nous définissons une quantification C * -algebrique des structures de Dirac constantes sur les tores, et nous démontrons que l’équivalence à O(n,n|) près des structures implique l’équivalence de Morita de leurs quantifications. Ce résultat complète et généralise un théorème de Rieffel et Schwarz, donné dans le cadre des structures de Poisson.

We define a C * -algebraic quantization of constant Dirac structures on tori and prove that O(n,n|)-equivalent structures have Morita equivalent quantizations. This completes and extends from the Poisson case a theorem of Rieffel and Schwarz.

DOI : https://doi.org/10.5802/aif.2059
Classification : 46L65,  81S10
Mots clés: structure de Dirac, structure de Poisson, équivalence de Morita, quantification
@article{AIF_2004__54_5_1565_0,
     author = {Tang, Xiang and Weinstein, Alan},
     title = {Quantization and Morita equivalence for constant Dirac structures on tori},
     journal = {Annales de l'Institut Fourier},
     pages = {1565--1580},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     doi = {10.5802/aif.2059},
     zbl = {1068.46044},
     mrnumber = {2127858},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_2004__54_5_1565_0/}
}
Tang, Xiang; Weinstein, Alan. Quantization and Morita equivalence for constant Dirac structures on tori. Annales de l'Institut Fourier, Tome 54 (2004) no. 5, pp. 1565-1580. doi : 10.5802/aif.2059. https://aif.centre-mersenne.org/item/AIF_2004__54_5_1565_0/

[1] J. Block; E. Getzler Quantization of foliations, Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, (New York, 1991), Tome Vol. 1, 2 (1992), pp. 471-487 | Zbl 0812.58028

[2] A. Connes Noncommutative Geometry, Academic Press, San Diego, 1994 | MR 1303779 | Zbl 0818.46076

[3] A. Connes; M.R. Douglas; A. Schwarz Noncommutative Geometry and Matrix Theory: Compactification on Tori, J. High Energy Phys (1998) | MR 1613978 | Zbl 1018.81052

[4] T.J. Courant Dirac manifolds, Trans. A.M.S, Tome 319 (1990), pp. 631-661 | MR 998124 | Zbl 0850.70212

[5] G. A. Elliott On the K-theory of the $C^*$ algebras generated by a projective representation of a torsion-free discrete abelian group, Operator Algebras and Group Representations (1984), pp. 157-184 | Zbl 0542.46030

[6] G.A. Elliott; H. Li Morita equivalence of smooth noncommutative tori (e-print, math.OA/0311502) | Zbl 1137.46030

[7] H. Kajiura Kronecker foliation, $D1$-branes and Morita equivalence of noncommutative two-tori, J. High Energy Phys, Tome 8 (2002) no. 50 | MR 1942142 | Zbl 1226.81097

[8] M. Kontsevich Homological algebra of mirror symmetry., Proceedings of the International Congress of Mathematicians (Zürich, 1994), Tome Vol. 1, 2 (1995), pp. 120-139 | Zbl 0846.53021

[9] H. Li Strong Morita equivalence of higher-dimensional noncommutative tori (e-print. To appear J. Reine Angew. Math., math.OA/0303123) | MR 2099203 | Zbl 1063.46057

[10] F. Lizzi; R. Szabo Noncommutative Geometry and String Duality, Conf. Proc. Corfu Summer Institute on Elementary Particle Physics (Kerkyra, 1998) (J. High Energy Phys.) (1999), pp. 17

[11] P.S. Muhly; J.N. Renault; D.P. Williams Equivalence and isomorphism for groupoid $C^*$-algebras, J. Operator Theory, Tome 17 (1987), pp. 3-22 | MR 873460 | Zbl 0645.46040

[12] S. Mukai Duality between $D(X)$ and $D(\widehat X)$ with its application to Picard sheaves, Nagoya Math. J., Tome 81 (1981), pp. 153-175 | MR 607081 | Zbl 0417.14036

[13] M.A. Rieffel Morita equivalence for $C^*$-algebras and $W^*$-algebras, J. Pure Appl. Algebra, Tome 5 (1974), pp. 51-96 | MR 367670 | Zbl 0295.46099

[14] M.A. Rieffel $C^*$-algebras associated with irrational rotations, Pacific. J. Math., Tome 93 (1981), pp. 415-429 | MR 623572 | Zbl 0499.46039

[15] M.A. Rieffel Projective modules over higher-dimensional non-commutative noncommutative tori, Canadian J. Math, Tome 40 (1988), pp. 257-338 | MR 941652 | Zbl 0663.46073

[16] M.A. Rieffel Deformation quantization of Heisenberg manifolds, Commun. Math. Phys, Tome 122 (1989), pp. 531-562 | MR 1002830 | Zbl 0679.46055

[17] M.A. Rieffel; A. Schwarz Morita equivalence of multidimensional noncommutative tori, Int. J. Math, Tome 10 (1999), pp. 289-299 | MR 1687145 | Zbl 0968.46060

[18] A. Schwarz Morita equivalence and duality, Lett. Math. Phys, Tome 50 (1999), pp. 309-321 | MR 1663471 | Zbl 0967.58004

[19] X. Tang Deformation Quantization of Pseudo Symplectic (Poisson) Groupoids (e-print, math.QA/0405378) | Zbl 05051278

[20] A. Weinstein; P. Dazord and A. Weinstein, eds. Symplectic groupoids, geometric quantization, and irrational rotation algebras, Symplectic geometry, groupoids, and integrable systems, Séminaire sud-Rhodanien de géométrie à Berkeley (1989) (MSRI Series) (1991), pp. 281-290 | Zbl 0731.58031

[21] P. Xu Noncommutative Poisson algebras, Amer. J. Math, Tome 116 (1994), pp. 101-125 | MR 1262428 | Zbl 0797.58012