[Améliorations des majorations pour le nombre de points des courbes sur un corps fini]
Grâce à de nouveaux arguments, nous améliorons les majorations connues du nombre maximal de points rationnels sur une courbe de genre définie sur un corps fini , pour certains couples . En particulier, nous donnons huit valeurs de qui étaient jusqu’à présent inconnues : , , , , , , , et . Nous redémontrons aussi, avec une utilisation minimale de l’ordinateur, un résultat de Savitt : il n’y a pas de courbe de genre sur ayant exactement points rationnels. Enfin, nous démontrons qu’il y a une infinité de tels que pour tout satisfaisant , la différence entre la borne de Weil-Serre de et la valeur exacte de est au moins égale à .
We give new arguments that improve the known upper bounds on the maximal number of rational points of a curve of genus over a finite field , for a number of pairs . Given a pair and an integer , we determine the possible zeta functions of genus- curves over with points, and then deduce properties of the curves from their zeta functions. In many cases we can show that a genus- curve over with points must have a low-degree map to another curve over , and often this is enough to give us a contradiction. In particular, we are able to provide eight previously unknown values of , namely: , , , , , , , and . Our arguments also allow us to give a non-computer-intensive proof of the recent result of Savitt that there are no genus- curves over having exactly rational points. Furthermore, we show that there is an infinite sequence of ’s such that for every with , the difference between the Weil-Serre bound on and the actual value of is at least .
Keywords: curve, rational point, zeta function, Weil bound, Serre bound, Oesterlé bound
Mot clés : courbe, point rationnel, fonction zêta, borne de Weil, borne de Serre, borne d'Oesterlé
Howe, Everett W. 1 ; Lauter, Kristin E. 2
@article{AIF_2003__53_6_1677_0, author = {Howe, Everett W. and Lauter, Kristin E.}, title = {Improved upper bounds for the number of points on curves over finite fields}, journal = {Annales de l'Institut Fourier}, pages = {1677--1737}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {6}, year = {2003}, doi = {10.5802/aif.1990}, zbl = {1065.11043}, mrnumber = {2038778}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1990/} }
TY - JOUR AU - Howe, Everett W. AU - Lauter, Kristin E. TI - Improved upper bounds for the number of points on curves over finite fields JO - Annales de l'Institut Fourier PY - 2003 SP - 1677 EP - 1737 VL - 53 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1990/ DO - 10.5802/aif.1990 LA - en ID - AIF_2003__53_6_1677_0 ER -
%0 Journal Article %A Howe, Everett W. %A Lauter, Kristin E. %T Improved upper bounds for the number of points on curves over finite fields %J Annales de l'Institut Fourier %D 2003 %P 1677-1737 %V 53 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1990/ %R 10.5802/aif.1990 %G en %F AIF_2003__53_6_1677_0
Howe, Everett W.; Lauter, Kristin E. Improved upper bounds for the number of points on curves over finite fields. Annales de l'Institut Fourier, Tome 53 (2003) no. 6, pp. 1677-1737. doi : 10.5802/aif.1990. https://aif.centre-mersenne.org/articles/10.5802/aif.1990/
[1] The Magma algebra system I: The user language, J. Symbolic Comput., Volume 24 (1997), pp. 235-265 | DOI | MR | Zbl
[2] The p-rank of curves and covers of curves, Courbes semi-stables et groupe fondamental en géométrie algébrique (Progr. Math.), Volume 187 (2000), pp. 267-277 | Zbl
[3] Variétés abéliennes ordinaires sur un corps fini, Invent. Math., Volume 8 (1969), pp. 238-243 | DOI | EuDML | MR | Zbl
[4] Real polynomials with all roots on the unit circle and abelian varieties over finite fields, J. Number Theory, Volume 73 (1998), pp. 426-450 | DOI | MR | Zbl
[4] Corrigendum: Real polynomials with all roots on the unit circle and abelian varieties over finite fields, J. Number Theory, Volume 83 (2000) no. 1, pp. 182 | Zbl
[5] The genus of curves over finite fields with many rational points, Manuscripta Math, Volume 89 (1996), pp. 103-106 | DOI | EuDML | MR | Zbl
[6] Tables of curves with many points, Math. Comp., Volume 69 (2000), pp. 797-810 | DOI | MR | Zbl
[7] Principally polarized ordinary abelian varieties over finite fields, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 2361-2401 | DOI | MR | Zbl
[8] On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field, J. Number Theory, Volume 92 (2002), pp. 139-163 | DOI | MR | Zbl
[9] On the genus of a maximal curve, Math. Ann., Volume 323 (2002), pp. 589-608 | DOI | MR | Zbl
[10] Euclid's algorithm in complex quartic fields, Acta Arith., Volume 20 (1972), pp. 393-400 | MR | Zbl
[11] Improved upper bounds for the number of rational points on algebraic curves over finite fields, C. R. Acad. Sci. Paris, Sér. I Math., Volume 328 (1999), pp. 1181-1185 | DOI | MR | Zbl
[12] Non-existence of a curve over of genus 5 with 14 rational points, Proc. Amer. Math. Soc, Volume 128 (2000), pp. 369-374 | DOI | MR | Zbl
[13] Zeta functions of curves over finite fields with many rational points, Coding Theory, Cryptography and Related Areas (2000), pp. 167-174 | Zbl
[14] Geometric methods for improving the upper bounds on the number of rational points on algebraic curves over finite fields, J. Algebraic Geom., Volume 10 (2001), pp. 19-36 | MR | Zbl
[15] The maximum or minimum number of rational points on genus three curves over finite fields, Compositio Math., Volume 134 (2002), pp. 87-111 | DOI | MR | Zbl
[16] Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, Oxford, 1985 | Zbl
[17] Commutative group schemes, Lecture Notes in Math, 15, Springer-Verlag, Berlin, 1966 | MR | Zbl
[18] The maximum number of rational points on a curve of genus 4 over is 25, Canad. J. Math., Volume 55 (2003), pp. 331-352 | DOI | MR | Zbl
[19] Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris, Sér. I Math., Volume 296 (1983), pp. 397-402 | MR | Zbl
[20] Nombres de points des courbes algébriques sur , Sém. Théor. Nombres Bordeaux 1982/83, Volume Exp. No. 22 | Zbl
[21] Résumé des cours de 1983--1984, Ann. Collège France (1984), pp. 79-83
[22] Rational points on curves over finite fields (1985) (unpublished notes by Fernando Q. Gouvéa of lectures at Harvard University)
[23] The trace of totally positive and real algebraic integers, Ann. of Math (2), Volume 46 (1945), pp. 302-312 | DOI | MR | Zbl
[24] Totally positive algebraic integers of small trace, Ann. Inst. Fourier (Grenoble), Volume 33 (1984) no. 3, pp. 1-28 | DOI | Numdam | MR | Zbl
[25] On the Riemann hypothesis in hyperelliptic function fields, Analytic number theory (Proc. Sympos. Pure Math), Volume 24 (1973), pp. 285-302 | Zbl
[26] Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993 | MR | Zbl
[27] Weierstrass points and curves over finite fields, Proc. London Math. Soc (3), Volume 52 (1986), pp. 1-19 | DOI | MR | Zbl
[28] The p-rank of Artin-Schreier curves, Manuscripta Math., Volume 16 (1975), pp. 169-193 | DOI | MR | Zbl
[29] Classes d'isogénie des variétés abéliennes sur un corps fini, Séminaire Bourbaki 1968/69 (Lecture Notes in Math), Volume 179 (1971), pp. 95-110 | Numdam | Zbl
[30] Improving the Oesterlé bound (preprint)
Cité par Sources :