# ANNALES DE L'INSTITUT FOURIER

On functions with bounded remainder
Annales de l'Institut Fourier, Volume 39 (1989) no. 1, p. 17-26
Let $T:ℝ/ℤ\to ℝ/ℤ$ be a von Neumann-Kakutani $q$- adic adding machine transformation and let $\phi \in {C}^{1}\left(\left[0,1\right]\right)$. Put${\phi }_{n}\left(x\right):=\phi \left(x\right)+\phi \left(Tx\right)+...+\phi \left({T}^{n-1}x\right),\phantom{\rule{4pt}{0ex}}x\in ℝ/ℤ,\phantom{\rule{4pt}{0ex}}n\in ℕ.$We study three questions:1. When will $\left({\phi }_{n}\left(x\right){\right)}_{n\ge 1}$ be bounded?2. What can be said about limit points of $\left({\phi }_{n}\left(x\right){\right)}_{n\ge 1}?$3. When will the skew product $\left(x,y\right)↦\left(Tx,y+\phi \left(x\right)\right)$ be ergodic on $ℝ/ℤ×ℝ?$
Soit $T:ℝ/ℤ\to ℝ/ℤ$ une transformation du type Neumann-Kakutani en base $q$ et soit $\phi \in {C}^{1}\left(\left[0,1\right]\right)$. Posons, pour $x\in ℝ/ℤ$, $n\in ℕ$,${\phi }_{n}\left(x\right):=\phi \left(x\right)+\phi \left(Tx\right)+\cdots +\phi \left({T}^{n-1}x\right).$Nous étudions les trois questions suivantes :1. Pour la suite $\left({\phi }_{n}\left(x\right){\right)}_{n\ge 1}$ : à quelles conditions sera-t-elle bornée ?2. Que peut-on dire sur les points d’adhérence de $\left({\phi }_{n}\left(x\right){\right)}_{n\ge 1}?$3. Pour le produit croisé $\left(x,y\right)↦\left(Tx,y+\phi \left(x\right)\right)$ sur le cylindre $ℝ/ℤ×ℝ$ : à quelles conditions sera-t-il ergodique ?
@article{AIF_1989__39_1_17_0,
author = {Hellekalek, P. and Larcher, Gerhard},
title = {On functions with bounded remainder},
journal = {Annales de l'Institut Fourier},
publisher = {Imprimerie Louis-Jean},
volume = {39},
number = {1},
year = {1989},
pages = {17-26},
doi = {10.5802/aif.1156},
mrnumber = {90i:28024},
zbl = {0674.28007},
language = {en},
url = {https://aif.centre-mersenne.org/item/AIF_1989__39_1_17_0}
}

Hellekalek, P.; Larcher, Gerhard. On functions with bounded remainder. Annales de l'Institut Fourier, Volume 39 (1989) no. 1, pp. 17-26. doi : 10.5802/aif.1156. https://aif.centre-mersenne.org/item/AIF_1989__39_1_17_0/

 Y. Dupain and V.T. Sós, On the one-sided boundedness of discrepancy-function of the sequence {nα}, Acta Arith., 37 (1980), 363-374. | MR 82c:10058 | Zbl 0445.10041

 H. Faure, Etude des restes pour les suites de Van der Corput généralisées, J. Number Th., 16 (1983), 376-394. | MR 84g:10082 | Zbl 0513.10047

 W.H. Gottschalk and G.A. Hedlund, Topological Dynamics, AMS Colloq. Publ., 1955. | MR 17,650e | Zbl 0067.15204

 P. Hellekalek, Regularities in the distribution of special sequences, J. Number Th., 18 (1984), 41-55. | MR 85e:11052 | Zbl 0531.10055

 P. Hellekalek, Ergodicity of a class of cylinder flows related to irregularities of distribution, Comp. Math., 61 (1987), 129-136. | Numdam | MR 88g:28018 | Zbl 0619.10051

 P. Hellekalek and G. Larcher, On the ergodicity of a class of skew products, Israel J. Math., 54 (1986), 301-306. | MR 87k:28013 | Zbl 0609.28007

 L.K. Hua and Y. Wang, Applications of number theory to numerical analysis, Springer-Verlag, Berlin, New York, 1981. | MR 83g:10034 | Zbl 0465.10045

 H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arith., 12 (1966), 193-212. | MR 35 #155 | Zbl 0144.28902

 L. Kuipers and H. Niederreiter, Uniform distribution of sequences, John Wiley & Sons, New York, 1974. | MR 54 #7415 | Zbl 0281.10001

 I. Oren, Ergodicity of cylinder flows arising from irregularities of distribution, Israel J. Math., 44 (1983), 127-138. | MR 84i:10055 | Zbl 0563.28010

 K. Petersen, On a series of cosecants related to a problem in ergodic theory, Comp. Math., 26 (1973), 313-317. | Numdam | MR 48 #4273 | Zbl 0269.10030