Let be a locally compact group, for let denote the closure of in the convolution operators on . Denote the dual of which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space . It is shown that on the unit sphere of the topology and the strong -multiplier topology coincide.
Soit un groupe localement compact, pour , soit l’adhérence de dans les opérateurs de convolution de . Désignons par le dual de qui est contenu dans l’espace des multiplicateurs ponctuels de l’espace de Figà-Talamanca Herz . On démontre que sur la sphère unité de , la topologie et la topologie forte, comme multiplicateurs de , coïncident.
@article{AIF_1985__35_1_125_0,
author = {Fendler, Gero},
title = {An $L^p$-version of a theorem of {D.A.} {Raikov}},
journal = {Annales de l'Institut Fourier},
pages = {125--135},
year = {1985},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {35},
number = {1},
doi = {10.5802/aif.1002},
zbl = {0543.43003},
mrnumber = {86h:43003},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1002/}
}
TY - JOUR AU - Fendler, Gero TI - An $L^p$-version of a theorem of D.A. Raikov JO - Annales de l'Institut Fourier PY - 1985 SP - 125 EP - 135 VL - 35 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1002/ DO - 10.5802/aif.1002 LA - en ID - AIF_1985__35_1_125_0 ER -
Fendler, Gero. An $L^p$-version of a theorem of D.A. Raikov. Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 125-135. doi: 10.5802/aif.1002
[1] and , The spaces Lp with mixed norm, Duke Math. J., 28 (1961), 301-324. | Zbl | MR
[2] and , Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes Series 2, Cambridge 1971. | Zbl | MR
[3] , An application of Littlewood-Paley theory in harmonic analysis, Math. Ann., 241 (1979), 83-69. | Zbl | MR | EuDML
[4] and , On representations in Banach spaces, Math. Ann., 266 (1984), 307-315. | Zbl | MR | EuDML
[5] , Algèbres Ap et convoluteurs de Lp, Séminaire Bourbaki 22è année, 1969/1970, no. 367. | Numdam | Zbl | EuDML
[6] , An application of the Radon Nikodym property in harmonic analysis, Bollentino U.M.I., (5) 18-B (1981), 663-671. | Zbl | MR
[7] and , On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra B(G) and of the measure algebra M(G), Rocky Moutain J. of Math., 11 (1981), 459-472. | Zbl | MR
[8] , Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier, Grenoble, 24-3 (1974), 145-157. | Numdam | Zbl | MR | EuDML
[9] , Harmonic synthesis for subgroups, Ann. Inst. Fourier Grenoble, 23-3 (1973), 91-123. | Numdam | Zbl | MR | EuDML
[10] , An “alternierende Verfahen” for general positive operators, Bull. A.M.S., 68 (1962), 95-102. | Zbl | MR
[11] , Topics in harmonic analysis related to the Littlewood-Paley theorem, Princeton University Press, 1970. | Zbl
Cité par Sources :



