Nous étudions une algèbre de fonctions infiniment différentiables définies sur l’espace de phase et satisfaisant des conditions de croissance à l’infini. Le produit dans est la transformée de Fourier symplectique de la convolution gauche. On montre que est une généralisation naturelle de l’algèbre des opérateurs pseudodifférentiels.
@article{AIF_1968__18_2_343_0, author = {Grossmann, A. and Loupias, Guy and Stein, Elias M.}, title = {An algebra of pseudo-differential operators and quantum mechanics in phase space}, journal = {Annales de l'Institut Fourier}, pages = {343--368}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {18}, number = {2}, year = {1968}, doi = {10.5802/aif.305}, zbl = {0176.45102}, mrnumber = {42 #2327}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.305/} }
TY - JOUR AU - Grossmann, A. AU - Loupias, Guy AU - Stein, Elias M. TI - An algebra of pseudo-differential operators and quantum mechanics in phase space JO - Annales de l'Institut Fourier PY - 1968 SP - 343 EP - 368 VL - 18 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.305/ DO - 10.5802/aif.305 LA - en ID - AIF_1968__18_2_343_0 ER -
%0 Journal Article %A Grossmann, A. %A Loupias, Guy %A Stein, Elias M. %T An algebra of pseudo-differential operators and quantum mechanics in phase space %J Annales de l'Institut Fourier %D 1968 %P 343-368 %V 18 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.305/ %R 10.5802/aif.305 %G en %F AIF_1968__18_2_343_0
Grossmann, A.; Loupias, Guy; Stein, Elias M. An algebra of pseudo-differential operators and quantum mechanics in phase space. Annales de l'Institut Fourier, Tome 18 (1968) no. 2, pp. 343-368. doi : 10.5802/aif.305. https://aif.centre-mersenne.org/articles/10.5802/aif.305/
[1] " The theory of groups and quantum mechanics ", London, Methnen, (1931).
," Structure of Dynamical Theories ", Lectures in Theoretical Physics, Brandeis, 1961, (Benjamin).
,[2] " C*-algèbres des systèmes canoniques : I ", Commun. Math. Phys., 2, 31-48 (1966). | MR | Zbl
and ,[3] Commun. Pure and Appl. Math., 18, 269 (1965). | Zbl
and ,[4] Commun. Math. Phys., 1, 14 (1965). | Zbl
,[5] J. Math. Phys., 7, 66 (1966). | Zbl
,[6] Proc. Cambridge Phil. Soc., 45, 99 (1949). | Zbl
,[7] Mathematische Annalen, 104, 570 (1931).
,[8] Commun. Pure and Appl. Math., 14, 187 (1961). | Zbl
,Illinois J. Math., 6, 500 (1962). | Zbl
,[9] Norm Ideal of completely continuous operators, (Van Nostrand), (1960). | MR | Zbl
,[10] Math. Scand., 13, 31 (1963). | Zbl
,[11] " C*-algèbres des systèmes canoniques: II ", Ann. I.H.P., VI, 1, 39 (1967). | Numdam | MR | Zbl
and ,[12] Review Mod. Phys., 33, 515 (1961). | Zbl
and ,[13] " Sur le formalisme de la convolution gauche ", Thesis, Marseille (1966).
,[14] Phys. Rev., 40, 749 (1932). | Zbl
,[15] Journal of Math. Phys., 5, 781 (1966).
,[16] Commun. Pure and Appl. Math., 18, 501 (1965). | Zbl
,[17] Asymptotic expansions, Dover Publications (1956). | MR | Zbl
,[18] S-Matrix and classical description of interactions. Preprint C.E.N. Saclay (France).
,[19] Mathematical Foundations of Quantum Mechanics, Benjamin 1963. | Zbl
,Cité par Sources :