On caractérise les ensembles tels que soit complet pour ; plus généralement, on étudie un problème analogue pour un cône de mesures positives sur un espace complètement régulier.
@article{AIF_1967__17_2_383_0, author = {Choquet, Gustave}, title = {Cardinaux 2-mesurables et c\^ones faiblement complets}, journal = {Annales de l'Institut Fourier}, pages = {383--393}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {17}, number = {2}, year = {1967}, doi = {10.5802/aif.274}, zbl = {0164.43004}, mrnumber = {37 #4556}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.274/} }
TY - JOUR AU - Choquet, Gustave TI - Cardinaux 2-mesurables et cônes faiblement complets JO - Annales de l'Institut Fourier PY - 1967 SP - 383 EP - 393 VL - 17 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.274/ DO - 10.5802/aif.274 LA - fr ID - AIF_1967__17_2_383_0 ER -
Choquet, Gustave. Cardinaux 2-mesurables et cônes faiblement complets. Annales de l'Institut Fourier, Tome 17 (1967) no. 2, pp. 383-393. doi : 10.5802/aif.274. https://aif.centre-mersenne.org/articles/10.5802/aif.274/
[1] Ensembles et cônes convexes faiblement complets, C.R. Acad. Sc., t. 254, Mars 1962, 2123-2125. | MR | Zbl
,[2] Rings of continuous functions, Van Nostrand. | Zbl
et ,[3] The representation of functionals by integrals, Duke Math. J., 19 (1952), 253-261. | MR | Zbl
,[4] Rings of real valued continuous functions I, Trans. Amer. Math. Soc., 64 (1948), 54-99. | MR | Zbl
,[5] Linear functionals on spaces of continuous functions, Fund. Math., 37, (1950), 161-189. | MR | Zbl
,[6] Linear topological spaces, Princeton, (1963). | MR | Zbl
et ,[7] Equivalence of a problem in measure theory to a problem in the theory of vector lattices, Bull. Amer. Math. Soc., 50 (1944), 719-722. | MR | Zbl
,[8] Mesurable cardinals and constructible sets, Bull. Acad. Pol., Vol. 9, (1961), pp. 521-524. | MR | Zbl
,Cité par Sources :