Classification of Mukai pairs with corank 3  [ Classification des paires de Mukai de corang 3 ]
Annales de l'Institut Fourier, à paraître, p. 1-52
On classifie les paires (X,)X est une variété de Fano lisse de dimension n5 et est un fibré vectoriel ample de rang n-2 sur X tel que c 1 ()=c 1 (X).
We classify the pairs (X,) where X is a smooth Fano manifold of dimension n5 and is an ample vector bundle of rank n-2 with c 1 ()=c 1 (X).
Reçu le : 2017-06-22
Révisé le : 2018-01-12
Accepté le : 2018-02-02
Classification:  14J45,  14J40,  14J60
Mots clés: variété de Fano, fibré vectoriel
@unpublished{AIF_0__0_0_A6_0,
     author = {Kanemitsu, Akihiro},
     title = {Classification of Mukai pairs with corank $3$},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Kanemitsu, Akihiro. Classification of Mukai pairs with corank $3$. Annales de l'Institut Fourier, à paraître, pp. 1-52.

[1] Ambro, Florin Ladders on Fano varieties, J. Math. Sci., New York, Tome 94 (1999) no. 1, pp. 1126-1135 | Article | MR 1703912 | Zbl 0948.14033

[2] Ancona, Vincenzo; Peternell, Thomas; Wiśniewski, Jarosław A. Fano bundles and splitting theorems on projective spaces and quadrics, Pac. J. Math., Tome 163 (1994) no. 1, pp. 17-42 http://projecteuclid.org/euclid.pjm/1102622627 | MR 1256175

[3] Andreatta, Marco Some remarks on the study of good contractions, Manuscr. Math., Tome 87 (1995) no. 3, pp. 359-367 | Article | MR 1340353 | Zbl 0860.14009

[4] Andreatta, Marco; Ballico, Edoardo; Wiśniewski, Jarosław A. Vector bundles and adjunction, Int. J. Math., Tome 3 (1992) no. 3, pp. 331-340 | Article | MR 1163727 | Zbl 0770.14008

[5] Andreatta, Marco; Ballico, Edoardo; Wiśniewski, Jarosław A. Two theorems on elementary contractions, Math. Ann., Tome 297 (1993) no. 2, pp. 191-198 | Article | MR 1241801 | Zbl 0789.14011

[6] Andreatta, Marco; Chierici, Elena; Occhetta, Gianluca Generalized Mukai conjecture for special Fano varieties, Cent. Eur. J. Math., Tome 2 (2004) no. 2, pp. 272-293 | Article | MR 2113552 | Zbl 1279.14053

[7] Andreatta, Marco; Mella, Massimiliano Contractions on a manifold polarized by an ample vector bundle, Trans. Am. Math. Soc., Tome 349 (1997) no. 11, pp. 4669-4683 | Article | MR 1401760

[8] Andreatta, Marco; Wiśniewski, Jarosław A. On manifolds whose tangent bundle contains an ample subbundle, Invent. Math., Tome 146 (2001) no. 1, pp. 209-217 | Article | MR 1859022

[9] Anghel, Cristian; Manolache, Nicolae Globally generated vector bundles on n with c 1 =3, Math. Nachr., Tome 286 (2013) no. 14-15, pp. 1407-1423 | MR 3119690

[10] Campana, Frédéric; Peternell, Thomas Projective manifolds whose tangent bundles are numerically effective, Math. Ann., Tome 289 (1991) no. 1, pp. 169-187 | Article | MR 1087244

[11] Chierici, Elena; Occhetta, Gianluca The cone of curves of Fano varieties of coindex four, Int. J. Math., Tome 17 (2006) no. 10, pp. 1195-1221 | Article | MR 2287674

[12] Cho, Koji; Miyaoka, Yoichi; Shepherd-Barron, Nicholas I. Characterizations of projective space and applications to complex symplectic manifolds, Higher dimensional birational geometry (Kyoto, 1997), Mathematical Society of Japan (Advanced Studies in Pure Mathematics) Tome 35 (2002), pp. 1-88 | MR 1929792 | Zbl 1063.14065

[13] Debarre, Olivier Higher-dimensional algebraic geometry, Springer, Universitext (2001), xiv+233 pages | Article | MR 1841091

[14] Dedieu, Thomas; Höring, Andreas Numerical characterisation of quadrics, Algebr. Geom., Tome 4 (2017) no. 1, pp. 120-135 | MR 3592468 | Zbl 1390.14126

[15] Fujita, Kento Around the Mukai conjecture for Fano manifolds, Eur. J. Math., Tome 2 (2016) no. 1, pp. 120-139 | Article | MR 3454094

[16] Fujita, Takao On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci., Univ. Tokyo, Sect. I A, Tome 22 (1975), pp. 103-115 | MR 0369363 | Zbl 0333.14004

[17] Fujita, Takao Classification of projective varieties of Δ-genus one, Proc. Japan Acad., Ser. A, Tome 58 (1982) no. 3, pp. 113-116 http://projecteuclid.org/euclid.pja/1195516108 | MR 664549 | Zbl 0568.14018

[18] Fujita, Takao On polarized varieties of small Δ-genera, Tôhoku Math. J., Tome 34 (1982) no. 3, pp. 319-341 | Article | MR 676113

[19] Fujita, Takao On polarized manifolds whose adjoint bundles are not semipositive, Algebraic geometry (Sendai, 1985), North-Holland (Advanced Studies in Pure Mathematics) Tome 10 (1987), pp. 167-178 | MR 946238

[20] Fujita, Takao On adjoint bundles of ample vector bundles, Complex algebraic varieties (Bayreuth, 1990), Springer (Lecture Notes in Mathematics) Tome 1507 (1992), pp. 105-112 | Article | MR 1178722

[21] Horrocks, Goeffrey Vector bundles on the punctured spectrum of a local ring, Proc. Lond. Math. Soc., Tome 14 (1964), pp. 689-713 | Article | MR 0169877 | Zbl 0126.16801

[22] Ionescu, Paltin Generalized adjunction and applications, Math. Proc. Camb. Philos. Soc., Tome 99 (1986) no. 3, pp. 457-472 | Article | MR 830359

[23] Iskovskikh, Vasily A.; Prokhorov, Yuri G. Fano varieties, Algebraic geometry, V, Springer (Encyclopaedia of Mathematical Sciences) Tome 47 (1999), pp. 1-247 | MR 1668579 | Zbl 0912.14013

[24] Kachi, Yasuyuki; Sato, Eiichi Polarized varieties whose points are joined by rational curves of small degrees, Ill. J. Math., Tome 43 (1999) no. 2, pp. 350-390 http://projecteuclid.org/euclid.ijm/1255985220 | MR 1703193

[25] Kachi, Yasuyuki; Sato, Eiichi Segre’s reflexivity and an inductive characterization of hyperquadrics, Mem. Am. Math. Soc., Tome 160 (2002) no. 763, x+116 pages | Article | MR 1938329

[26] Kanemitsu, Akihiro Extremal rays and nefness of tangent bundles (2016) (https://arxiv.org/abs/1605.04680, to appear in Mich. Math. J.)

[27] Kanemitsu, Akihiro Fano 5-folds with nef tangent bundles, Math. Res. Lett., Tome 24 (2017) no. 5, pp. 1453-1475 | Article | Zbl 06900854

[28] Kawamata, Yujiro; Matsuda, Katsumi; Matsuki, Kenji Introduction to the minimal model problem, Algebraic geometry (Sendai, 1985), North-Holland (Advanced Studies in Pure Mathematics) Tome 10 (1987), pp. 283-360 | MR 946243

[29] Kebekus, Stefan Characterizing the projective space after Cho, Miyaoka and Shepherd-Barron, Complex geometry (Göttingen, 2000), Springer (2002), pp. 147-155 | MR 1922103

[30] Kobayashi, Shoshichi; Ochiai, Takushiro Characterizations of complex projective spaces and hyperquadrics, J. Math. Kyoto Univ., Tome 13 (1973), pp. 31-47 | MR 0316745

[31] Kollár, János Rational curves on algebraic varieties, Springer, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., Tome 32 (1996), viii+320 pages | Article | MR 1440180

[32] Kollár, János; Miyaoka, Yoichi; Mori, Shigefumi Rational connectedness and boundedness of Fano manifolds, J. Differ. Geom., Tome 36 (1992) no. 3, pp. 765-779 http://projecteuclid.org/euclid.jdg/1214453188 | MR 1189503

[33] Kollár, János; Miyaoka, Yoichi; Mori, Shigefumi Rational curves on Fano varieties, Classification of irregular varieties (Trento, 1990), Springer (Lecture Notes in Mathematics) Tome 1515 (1992), pp. 100-105 | Article | MR 1180339

[34] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge University Press, Cambridge Tracts in Mathematics, Tome 134 (1998), viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | Article | MR 1658959

[35] Lanteri, Antonio Ample vector bundles with sections vanishing on surfaces of Kodaira dimension zero, Matematiche, Tome 51 (1996) no. suppl., pp. 115-125 | MR 1485703 | Zbl 0910.14022

[36] Lazarsfeld, Robert Some applications of the theory of positive vector bundles, Complete intersections (Acireale, 1983), Springer (Lecture Notes in Mathematics) Tome 1092 (1984), pp. 29-61 | Article | MR 775876

[37] Mella, Massimiliano Existence of good divisors on Mukai varieties, J. Algebr. Geom., Tome 8 (1999) no. 2, pp. 197-206 | MR 1675146

[38] Miyaoka, Yoichi The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry (Sendai, 1985), North-Holland (Advanced Studies in Pure Mathematics) Tome 10 (1987), pp. 449-476 | MR 946247

[39] Miyaoka, Yoichi Numerical characterisations of hyperquadrics, Complex analysis in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday, Mathematical Society of Japan (Advanced Studies in Pure Mathematics) Tome 42 (2004), pp. 209-235 | MR 2087053

[40] Mori, Shigefumi Projective manifolds with ample tangent bundles, Ann. Math., Tome 110 (1979) no. 3, pp. 593-606 | Article | MR 554387

[41] Mukai, Shigeru Problems on characterization of the complex projective space, Birational Geometry of Algebraic Varieties, Open Problems, Katata, the 23rd Int’l Symp., Taniguchi Foundation (1988), pp. 57-60

[42] Mukai, Shigeru Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA, Tome 86 (1989) no. 9, pp. 3000-3002 | Article | MR 995400 | Zbl 0679.14020

[43] Muñoz, Roberto; Occhetta, Gianluca; Solá Conde, Luis E. Uniform vector bundles on Fano manifolds and applications, J. Reine Angew. Math., Tome 664 (2012), pp. 141-162 | MR 2980134

[44] Novelli, Carla; Occhetta, Gianluca Ruled Fano fivefolds of index two, Indiana Univ. Math. J., Tome 56 (2007) no. 1, pp. 207-241 | Article | MR 2305935

[45] Novelli, Carla; Occhetta, Gianluca Projective manifolds containing a large linear subspace with nef normal bundle, Mich. Math. J., Tome 60 (2011) no. 2, pp. 441-462 | Article | MR 2825270

[46] Occhetta, Gianluca A note on the classification of Fano manifolds of middle index, Manuscr. Math., Tome 117 (2005) no. 1, pp. 43-49 | Article | MR 2142900

[47] Occhetta, Gianluca A characterization of products of projective spaces, Can. Math. Bull., Tome 49 (2006) no. 2, pp. 270-280 | Article | MR 2226250

[48] Occhetta, Gianluca; Solá Conde, Luis E.; Watanabe, Kiwamu; Wiśniewski, Jarosław A. Fano manifolds whose elementary contractions are smooth 1 -fibrations: a geometric characterization of flag varieties, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Tome 17 (2017) no. 2, pp. 573-607 | MR 3700378 | Zbl 1390.14128

[49] Ohno, Masahiro Classification of generalized polarized manifolds by their nef values, Adv. Geom., Tome 6 (2006) no. 4, pp. 543-599 | Article | MR 2267037

[50] Ohno, Masahiro Nef vector bundles on a projective space or a hyperquadric with the first Chern class small (2016) (https://arxiv.org/abs/1409.4191v3 )

[51] Ohno, Masahiro Nef vector bundles on a projective space with first Chern class 3 and second Chern class 8, Matematiche, Tome 72 (2017) no. 2, pp. 69-81

[52] Ohno, Masahiro Nef vector bundles on a projective space with first Chern class 3 (2018) (https://arxiv.org/abs/1604.05847v7 )

[53] Ohno, Masahiro; Terakawa, Hiroyuki A spectral sequence and nef vector bundles of the first Chern class two on hyperquadrics, Ann. Univ. Ferrara, Sez. VII, Sci. Mat., Tome 60 (2014) no. 2, pp. 397-406 | Article | MR 3275418 | Zbl 06407046

[54] Okonek, Christian; Schneider, Michael; Spindler, Heinz Vector bundles on complex projective spaces, Birkhäuser, Progress in Mathematics, Tome 3 (1980), vii+389 pages | MR 561910

[55] Ottaviani, Giorgio Spinor bundles on quadrics, Trans. Am. Math. Soc., Tome 307 (1988) no. 1, pp. 301-316 | Article | MR 936818

[56] Ottaviani, Giorgio On Cayley bundles on the five-dimensional quadric, Boll. Unione Mat. Ital., VII. Ser., A, Tome 4 (1990) no. 1, pp. 87-100 | MR 1047517 | Zbl 0722.14006

[57] Peternell, Thomas A characterization of P n by vector bundles, Math. Z., Tome 205 (1990) no. 3, pp. 487-490 | Article | MR 1082869

[58] Peternell, Thomas Ample vector bundles on Fano manifolds, Int. J. Math., Tome 2 (1991) no. 3, pp. 311-322 | Article | MR 1104121

[59] Peternell, Thomas; Szurek, Michał; Wiśniewski, Jarosław A. Fano manifolds and vector bundles, Math. Ann., Tome 294 (1992) no. 1, pp. 151-165 | Article | MR 1180456

[60] Peternell, Thomas; Szurek, Michał; Wiśniewski, Jarosław A. Numerically effective vector bundles with small Chern classes, Complex algebraic varieties (Bayreuth, 1990), Springer (Lecture Notes in Mathematics) Tome 1507 (1992), pp. 145-156 | Article | MR 1178725

[61] Sato, Eiichi Uniform vector bundles on a projective space, J. Math. Soc. Japan, Tome 28 (1976) no. 1, pp. 123-132 | MR 0399101 | Zbl 0315.14003

[62] Sierra, José Carlos; Ugaglia, Luca On globally generated vector bundles on projective spaces II, J. Pure Appl. Algebra, Tome 218 (2014) no. 1, pp. 174-180 | Article | MR 3120618 | Zbl 06244901

[63] Szurek, Michał; Wiśniewski, Jarosław A. Fano bundles over 3 and Q 3 , Pac. J. Math., Tome 141 (1990) no. 1, pp. 197-208 http://projecteuclid.org/euclid.pjm/1102646779 | MR 1028270

[64] Szurek, Michał; Wiśniewski, Jarosław A. On Fano manifolds, which are P k -bundles over P 2 , Nagoya Math. J., Tome 120 (1990), pp. 89-101 http://projecteuclid.org/euclid.nmj/1118782199 | MR 1086572

[65] Tironi, Andrea L. Nefness of adjoint bundles for ample vector bundles of corank 3, Math. Nachr., Tome 286 (2013) no. 14-15, pp. 1548-1570 | MR 3119701

[66] Watanabe, Kiwamu Lengths of chains of minimal rational curves on Fano manifolds, J. Algebra, Tome 325 (2011), pp. 163-176 | Article | MR 2745534

[67] Wiśniewski, Jarosław A. Length of extremal rays and generalized adjunction, Math. Z., Tome 200 (1989) no. 3, pp. 409-427 | Article | MR 978600 | Zbl 0668.14004

[68] Wiśniewski, Jarosław A. Ruled Fano 4-folds of index 2, Proc. Am. Math. Soc., Tome 105 (1989) no. 1, pp. 55-61 | Article | MR 929433

[69] Wiśniewski, Jarosław A. On a conjecture of Mukai, Manuscr. Math., Tome 68 (1990) no. 2, pp. 135-141 | Article | MR 1063222

[70] Wiśniewski, Jarosław A. On contractions of extremal rays of Fano manifolds, J. Reine Angew. Math., Tome 417 (1991), pp. 141-157 | Article | MR 1103910

[71] Wiśniewski, Jarosław A. A report on Fano manifolds of middle index and b 2 2, Projective geometry with applications, Dekker, New York (Lecture Notes in Pure and Applied Mathematics) Tome 166 (1994), pp. 19-26 | MR 1302938

[72] Ye, Yun-Gang; Zhang, Qi On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J., Tome 60 (1990) no. 3, pp. 671-687 | Article | MR 1054530

[73] Zhang, Qi A theorem on the adjoint system for vector bundles, Manuscr. Math., Tome 70 (1991) no. 2, pp. 189-201 | Article | MR 1085632

[74] Zhang, Qi On the spannedness of adjunction of vector bundles, Math. Z., Tome 223 (1996) no. 4, pp. 725-729 | Article | MR 1421966