Classification: 14J33, 14N35, 32S25
Keywords: a mirror symmetry, simple elliptic singularities, Frobenius manifolds, Gromov–Witten theory, weighted projective line, primitive forms, the invariant theory, an elliptic Weyl group, an eta product
@article{AIF_2011__61_7_2885_0, author = {Satake, Ikuo and Takahashi, Atsushi}, title = {Gromov--Witten invariants for mirror orbifolds of simple elliptic singularities}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {61}, number = {7}, year = {2011}, pages = {2885-2907}, doi = {10.5802/aif.2797}, zbl = {pre06193030}, mrnumber = {3112511}, language = {en}, url = {https://aif.centre-mersenne.org/item/AIF_2011__61_7_2885_0} }
Satake, Ikuo; Takahashi, Atsushi. Gromov–Witten invariants for mirror orbifolds of simple elliptic singularities. Annales de l'Institut Fourier, Volume 61 (2011) no. 7, pp. 2885-2907. doi : 10.5802/aif.2797. https://aif.centre-mersenne.org/item/AIF_2011__61_7_2885_0/
[1] Gromov–Witten theory of Deligne–Muford stacks, Amer. J. Math., Tome 130 (2008) no. 5, pp. 1337-1398 | MR 2450211 | Zbl 1193.14070
[2] Orbifold Gromov–Witten Theory, Orbifolds in mathematics and physics (Madison, WI, 2001), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 310 (2002), pp. 25-85 | MR 1950939 | Zbl 1091.53058
[3] Geometry of 2d topological field theories, Integrable systems and quantum groups (Montecatini Terme, 1993), Springer, Berlin (Lecture Notes in Math.) Tome 1620 (1996), pp. 120-348 | MR 1397274 | Zbl 0841.58065
[4] Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation, Commun. Math. Phys., Tome 198 (1998), pp. 311-361 | MR 1672512 | Zbl 0923.58060
[5] Frobenius manifolds and Virasoro constraints, Selecta Math. (N.S.), Tome 5 (1999) no. 4, pp. 423-466 | MR 1740678 | Zbl 0963.81066
[6] Strange duality of weighted homogeneous polynomials, Compositio Math., Tome 147 (2011), pp. 1413-1433 | MR 2834726 | Zbl 1238.14029
[7] The Witten equation, mirror symmetry and quantum singularity theory (arXiv:0712.4021)
[8] Landau-Ginzburg/Calabi-Yau Correspondence of all Genera for Elliptic Orbifold (arXiv:1106.6270)
[9] Gromov-Witten theory of elliptic orbifold and quasimodular forms (arXiv:1106.2321)
[10] Tata Lectures on Theta I, Birkhäuser, Progress in Math., Tome 28 (1983) | MR 688651 | Zbl 0509.14049
[11] Notes on the flat structures associated with simple and simply elliptic singularities, Integrable Systems and Algebraic Geometry, World-Scientific ((eds. M.-H. Saito, Y. Shimuzu, K. Ueno), Proceedings of the Taniguchi Symposium 1997) (1998), pp. 373-383 | MR 1672069 | Zbl 0964.32025
[12] Differential relations of theta functions, Osaka J. Math., Tome 32 (1995) no. 2, pp. 431-450 | MR 1355752 | Zbl 0864.34001
[13] Differential equations for modular forms of level three, Funkcial. Ekvac., Tome 44 (2001) no. 3, pp. 377-389 | MR 1893938 | Zbl 1145.11310
[14] Gromov-Witten theory of orbicurves, the space of tri-polynomials and Symplectic Field Theory of Seifert fibrations (arXiv:0808.2626) | Zbl 1235.14053
[15] Primitive forms for a universal unfolding of a function with an isolated critical point, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 28 (1982) no. 3, pp. 775-792 | MR 656053 | Zbl 0523.32015
[16] Period mapping associated to a primitive form, Publ. RIMS, Kyoto Univ., Tome 19 (1983), pp. 1231-1264 | MR 723468 | Zbl 0539.58003
[17] Extended Affine Root System II, Publ. RIMS, Kyoto Univ., Tome 26 (1990), pp. 15-78 | MR 1053908 | Zbl 0713.17014
[18] Duality for regular systems of weights, Asian J. Math., Tome 2 (1998), pp. 983-1047 | MR 1734136 | Zbl 0963.32023
[19] From Primitive Forms to Frobenius manifolds (Proceedings of Symnposia in Pure Mathematics) Tome 78 (2008), pp. 31-48 | MR 2483747 | Zbl 1161.32013
[20] Flat Structure and the Prepotential for the Elliptic Root System of Type , Topological field theory, primitive forms and related topics, Birkhäuser ((ed. by M. Kashiwara, et al.), Progress in Math.) Tome 160 (1998), pp. 427-452 | MR 1653034 | Zbl 0933.11026
[21] Frobenius manifolds for elliptic root systems, Osaka J. Math., Tome 17 (2010), pp. 301-330 | MR 2666136 | Zbl 1191.53057
[22] Simple elliptic singularities: A note on their G-function (arXiv:1004.2140) | Zbl 1256.53056
[23] Weighted projective lines associated to regular systems of weights of dual type, Adv. Stud. Pure Math., Tome 59 (2010), pp. 371-388 | MR 2683215 | Zbl 1213.14075
[24] Homological mirror symmetry and simple elliptic singularities (arXiv:math/0604361)
[25] Topological Landau-Ginzburg matter at , Physics Letters B, Tome 269 (1991), pp. 96-102 | MR 1134056