Classification: 14J33, 14J32, 14H10
Keywords: Mirror symmetry, Gromov–Witten theory, Calabi–Yau varieties, moduli of curves
@article{AIF_2011__61_7_2803_0, author = {Chiodo, Alessandro and Ruan, Yongbin}, title = {A global mirror symmetry framework for the Landau--Ginzburg/Calabi--Yau correspondence}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {61}, number = {7}, year = {2011}, pages = {2803-2864}, doi = {10.5802/aif.2795}, zbl = {pre06193028}, mrnumber = {3112509}, language = {en}, url = {https://aif.centre-mersenne.org/item/AIF_2011__61_7_2803_0} }
Chiodo, Alessandro; Ruan, Yongbin. A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence. Annales de l'Institut Fourier, Volume 61 (2011) no. 7, pp. 2803-2864. doi : 10.5802/aif.2795. https://aif.centre-mersenne.org/item/AIF_2011__61_7_2803_0/
[1] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math., Tome 130 (2008) no. 5 | MR 2450211 | Zbl 1193.14070
[2] Moduli of twisted spin curves, Proc. Amer. Math. Soc., Tome 131 (2003), pp. 685-699 (preprint version: math.AG/0104154) | MR 1937405 | Zbl 1037.14008
[3] Topological Strings and (Almost) Modular Forms, Commun. Math. Phys., Tome 277 (2008), pp. 771-819 (preprint version: hep-th/0607100) | MR 2365453 | Zbl 1165.81037
[4] Singularities of differentiable maps, Birkhäuser, Boston Tome II (1988) | MR 966191
[5] Dual Cones and Mirror Symmetry for Generalized Calabi–Yau Manifolds, Mirror Symmetry II, Amer. Math. Soc. Providence, RI (AMS/IP Stud. Adv. Math 1) (1997), pp. 71-86 | MR 1416334 | Zbl 0927.14019
[6] A Generalized Construction of Mirror Manifolds, Nuclear Physics B, Tome 393 (1993), p. 397-391 | MR 1214325 | Zbl 1245.14039
[7] Mirror Symmetry Constructions: A Review, Mirror Symmetry II, Amer. Math. Soc. Providence, RI (AMS/IP Stud. Adv. Math 1) (1997), pp. 87-113 (preprint version: arXiv:hep-th/9406008) | MR 1416335 | Zbl 0919.14023
[8] Kodaira–Spencer Theory of Gravity and Exact Results for Quantum String Amplitudes, Comm. Math. Phy., Tome 165 (1994), pp. 311-427 | MR 1301851 | Zbl 0815.53082
[9] model for the orbifold Chow ring of weighted projective spaces, Communications in Algebra, Tome 37 (2009), pp. 503-514 | MR 2493797 | Zbl 1178.14056
[10] Berglund–Hübsch mirror symmetry via vertex algebras (preprint version: arXiv:1007.2633v3)
[11] A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, Tome 359 (1991), pp. 21-74 | MR 1115626 | Zbl 1098.32506
[12] The Witten top Chern class via -theory, J. Algebraic Geom., Tome 15 (2006) no. 4, pp. 681-707 (preprint version: math.AG/0210398) | MR 2237266 | Zbl 1117.14008
[13] Stable twisted curves and their -spin structures (Courbes champêtres stables et leurs structures -spin), Ann. Inst. Fourier, Tome 58 (2008) no. 5, pp. 1635-1689 (preprint version: math.AG/0603687) | Numdam | MR 2445829 | Zbl 1179.14028
[14] Towards an enumerative geometry of the moduli space of twisted curves and th roots, Compos. Math., Tome 144 (2008), pp. 1461-1496 (Part 6, preprint version: math.AG/0607324) | MR 2474317 | Zbl 1166.14018
[15] Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence (preprint version: arXiv:1201.0813)
[16] Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., Tome 182 (2010), pp. 117-165 (preprint version: arXiv:0812.4660) | MR 2672282 | Zbl 1197.14043
[17] LG/CY correspondence: the state space isomorphism, Adv. Math., Tome 227 (2011) no. 6, pp. 2157-2188 | MR 2807086 | Zbl 1245.14038
[18] Twisted Gromov–Witten -spin potentials and Givental’s quantization, Adv. Theor. Math. Phys., Tome 13 (2009) no. 5, pp. 1335-1369 (preprint version: arXiv:0711.0339) | MR 2672465 | Zbl 1204.81099
[19] Duality for toric Landau-Ginzburg models (preprint: arXiv:0803.0447)
[20] On the Crepant Resolution Conjecture in the Local Case, Communications in Mathematical Physics, Tome 287 (2009), pp. 1071-1108 | MR 2486673 | Zbl 1200.53081
[21] Computing Genus-Zero Twisted Gromov–Witten Invariants, Duke Math., Tome 147 (2009), pp. 377-438 | MR 2510741 | Zbl 1176.14009
[22] The quantum orbifold cohomology of weighted projective spaces, Acta Math., Tome 202 (2009) no. 2, pp. 139-193 | MR 2506749 | Zbl 1213.53106
[23] Quantum Riemann–Roch, Lefschetz and Serre, Annals of mathematics, Tome 165 (2007) no. 1, pp. 15-53 | MR 2276766 | Zbl 1189.14063
[24] Wall-Crossings in Toric Gromov-Witten Theory I: Crepant Examples, Geometry and Topology, Tome 13 (2009) no. 2, pp. 2675-2744 | MR 2529944 | Zbl 1184.53086
[25] Quantum Cohomology and Crepant Resolutions: A Conjecture (preprint: arXiv:0710.5901)
[26] Local behavior of Hodge structures at infinity, Mirror Symmetry II, AMS and International Press (1997), pp. 683-699 | MR 1416353 | Zbl 0939.14005
[27] Weighted projective varieties, Proc. Vancouver 1981, Springer (Lecture Notes in Math.) Tome 956 (1982), pp. 34-71 | MR 704986 | Zbl 0516.14014
[28] Tautological relations and the r-spin Witten conjecture, Annales Scientifiques de l’ENS, Tome 43 (2010) no. 4, pp. 621-658 (preprint version: math.AG/0612510) | Numdam | MR 2722511 | Zbl 1203.53090
[29] Witten’s Integrable Hierarchies Conjecture (preprint: arXiv:1008.0927)
[30] The Witten equation and its virtual fundamental cycle (preprint: arXiv:0712.4025)
[31] The Witten equation, mirror symmetry and quantum singularity theory (preprint: arXiv:0712.4021v1)
[32] Geometry and analysis of spin equations, Comm. Pure Appl. Math., Tome 61 (2008) no. 6, pp. 745-788 | MR 2400605 | Zbl 1141.58012
[33] A mirror theorem for toric complete intersections, Topological field theory, primitive forms and related topics (Kyoto, 1996) (Progr. Math.) Tome 160, pp. 141-175 | Zbl 0936.14031
[34] Gromov–Witten invariants and quantization of quadratic hamiltonians, Frobenius manifolds, Vieweg, Wiesbaden (Aspects Math., E36) (2004), pp. 91-112 (preprint version: math.AG/0108100)
[35] Mirror manifolds in higher dimension, Comm. Math. Phys., Tome 173 (1995) no. 3, pp. 559-597 | MR 1357989 | Zbl 0842.32014
[36] Phases Of N=2 Theories In 1+1 Dimensions With Boundary (DESY-07-154, CERN-PH-TH/2008-048 Preprint version: arXiv:0803.2045)
[37] geometry, Frobenius manifolds, their connections and their construction for singularities, J. Reine Angew. Math., Tome 555 (2003), pp. 77-161 | MR 1956595 | Zbl 1040.53095
[38] D-branes from matrix factorizations, Strings 04. Part I. C. R. Phys., Tome 5 (2004) no. 9-10, pp. 1061-1070 | MR 2121690
[39] Hypergeometric functions and mirror symmetry in toric varieties (preprint: arXiv:math/9912109)
[40] Topological string theory on compact Calabi–Yau: modularity and boundary conditions, Homological mirror symmetry, Springer, Berlin (Lecture Notes in Phys.) Tome 757 (2009), pp. 45-102 (arXiv:hep-th/0612125) | MR 2596635 | Zbl 1166.81358
[41] Landau–Ginzburg orbifolds, Nuclear Phys. B, Tome 339 (1990) no. 1, pp. 95-120 | MR 1061738
[42] An integral structure in quantum cohomology and mirror symmetry for orbifolds, Adv. in Math., Tome 222 (2009), pp. 1016-1079 (preprint version: arXiv:0903.1463v1) | MR 2553377 | Zbl 1190.14054
[43] Equivalence of the derived category of a variety with a singularity category (preprint: arXiv:1011.1484)
[44] Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math., Tome 126 (2001) no. 2, pp. 157-212 (math.AG/9905034) | MR 1827643 | Zbl 1015.14028
[45] A note on the two approaches to stringy functors for orbifolds (preprint: arXiv:math/0703209)
[46] Singularities with symmetries, orbifold Frobenius algebras and mirror symmetry, Contemp. Math., Tome 403 (2006), pp. 67-116 | MR 2234885 | Zbl 1116.14037
[47]
(unpublished)[48] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., Tome 147 (1992) no. 1, pp. 1-23 | Zbl 0756.35081
[49] Gromov-Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., Tome 164 (1994), pp. 525-562 | MR 1291244 | Zbl 0853.14020
[50] FJRW rings and Landau–Ginzburg Mirror Symmetry (preprint: arXiv:0906.0796)
[51] Landau-Ginzburg/Calabi-Yau correspondence of all genera for elliptic orbifold P (preprint: arXiv:1106.6270)
[52] FJRW-rings and Mirror Symmetry, Comm. Math. Phys., Tome 296 (2010), pp. 145-174 | MR 2606631 | Zbl 1250.81087
[53] On the classification of quasihomogeneous functions, Comm. Math. Phys., Tome 150 (1992) no. 1, pp. 137-147 | MR 1188500 | Zbl 0767.57019
[54] All abelian symmetries of Landau-Ginzburg potentials, Nucl. Phys. B, Tome 405 (1993) no. 2-3, pp. 305-325 (preprint: hep-th/9211047) | MR 1240688 | Zbl 0990.81635
[55] Symplectic surgeries and Gromov–Witten invariants of Calabi–Yau three-folds, Invent. Math., Tome 145 (2001), pp. 151-218 | MR 1839289 | Zbl 1062.53073
[56] Mirror principle. I., Asian J. Math., Tome 1 (1997) no. 4, pp. 729-763 | MR 1621573 | Zbl 0953.14026
[57] Isolated singular points on complete intersections, Cambridge University Press, London Math. Soc. Lecture Note Series, Tome 77 (1984) | MR 747303 | Zbl pre06152219
[58] A topological view of Gromov–Witten theory, Topology, Tome 45 (2006) no. 5, pp. 887-918 | MR 2248516 | Zbl 1112.14065
[59] Gromov–Witten theory of elliptic orbifold P and quasi-modular forms (preprint: arXiv:1106.2321)
[60] Beyond the Kähler cone, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. (Lecture Notes in Phys.) Tome 9, pp. 361-376 | Zbl 0847.32034
[61] Mathematical Aspects of Mirror Symmetry, Complex Algebraic Geometry (IAS/Park City Math. Series) Tome 3 (1997), pp. 265-340 | MR 1442525 | Zbl 0932.14022
[62] Singularities II; Automorphisms of forms, Math. Ann., Tome 231 (1978), pp. 229-240 | MR 476735 | Zbl 0352.14002
[63] Derived categories of coherent sheaves and triangulated categories of singularities (preprint: math.AG/0503632) | Zbl 0996.18007
[64] La descente des cols par les onglets de Lefschetz, avec vues sur Gauss–Manin, Systèmes différentiels et singularités (Asterisques) Tome 130 (1985), pp. 11-47 | MR 804048 | Zbl 0597.32012
[65] Witten’s top Chern class on the moduli space of higher spin curves, Frobenius manifolds, Vieweg, Wiesbaden (Aspects Math., E36) (2004), pp. 253-264 (preprint version: math.AG/0208112) | MR 2115773 | Zbl 1105.14010
[66] Chern (preprint: math.AG/0011032)
[67] Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 276 (2001), pp. 229-249 (preprint version: math.AG/0011032) | MR 1837120 | Zbl 1051.14007
[68] The Witten equation and geometry of Landau–Ginzburg model (in preparation)
[69] Intersection form for quasi-homogeneous singularities, Compositio Mathematica, Tome 34 (1977) no. 2, pp. 211-223 | Numdam | MR 453735 | Zbl 0347.14001
[70] Catastrophes and the classification of conformal field theories, Phys. Lett. B, Tome 218 (1989) no. 22, pp. 51 | MR 983349
[71] A note on symmetry of singularities, Bull. London Math. Soc., Tome 12 (1980) no. 3, pp. 169-175 | MR 572095 | Zbl 0427.32010
[72] Two-dimensional gravity and intersection theory on the moduli space, Surveys in Diff. Geom., Tome 1 (1991), pp. 243-310 | MR 1144529 | Zbl 0757.53049
[73] Algebraic geometry associated with matrix models of two-dimensional gravity, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX (1993), pp. 235-269 | MR 1215968 | Zbl 0812.14017
[74] Phases of theories in two dimensions, Nucl.Phys. B, Tome 403 (1993), pp. 159-222 | MR 1232617 | Zbl 0910.14020
[75] Standard vs. reduced genus-one Gromov–Witten invariants, Geom. Topol., Tome 12 (2008) no. 2, pp. 1203-1241 | MR 2403808 | Zbl 1167.14009