[Une relation entre la torsion de Reidemeister non acyclique et un zéro de la torsion de Reidemeister acyclique]
Nous montrons une relation entre la torsion de Reidemeister non-acyclique et un zéro de la torsion de Reidemeister acyclique pour une représentation -régulière dans ou du groupe d’un nœud. Alors nous pouvons donner une méthode pour calculer la torsion de Reidemeister non-acyclique de l’extérieur d’un nœud. Nous calculons un nouvel exemple et étudions le comportement de la torsion de Reidemeister non-acyclique associée à un nœud à deux-ponts et une -représentations du groupe du nœud.
We show a relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion for a -regular or -representation of a knot group. Then we give a method to calculate the non-acyclic Reidemeister torsion of a knot exterior. We calculate a new example and investigate the behavior of the non-acyclic Reidemeister torsion associated to a -bridge knot and -representations of its knot group.
Keywords: Reidemeister torsion, twisted Alexander invariant, knots, representation spaces
Mots-clés : torsion de Reidemeister, invariant tordu de Alexander, nœuds, variétés des représentations
Yamaguchi, Yoshikazu 1
@article{AIF_2008__58_1_337_0, author = {Yamaguchi, Yoshikazu}, title = {A relationship between the non-acyclic {Reidemeister} torsion and a zero of the acyclic {Reidemeister} torsion}, journal = {Annales de l'Institut Fourier}, pages = {337--362}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {1}, year = {2008}, doi = {10.5802/aif.2352}, mrnumber = {2401224}, zbl = {1158.57027}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2352/} }
TY - JOUR AU - Yamaguchi, Yoshikazu TI - A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion JO - Annales de l'Institut Fourier PY - 2008 SP - 337 EP - 362 VL - 58 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2352/ DO - 10.5802/aif.2352 LA - en ID - AIF_2008__58_1_337_0 ER -
%0 Journal Article %A Yamaguchi, Yoshikazu %T A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion %J Annales de l'Institut Fourier %D 2008 %P 337-362 %V 58 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2352/ %R 10.5802/aif.2352 %G en %F AIF_2008__58_1_337_0
Yamaguchi, Yoshikazu. A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion. Annales de l'Institut Fourier, Tome 58 (2008) no. 1, pp. 337-362. doi : 10.5802/aif.2352. https://aif.centre-mersenne.org/articles/10.5802/aif.2352/
[1] Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, New York, 1994 | MR | Zbl
[2] -representation spaces for two-bridge knot groups, Math. Ann., Volume 288 (1990), pp. 103-119 | DOI | MR | Zbl
[3] Knots Second edition, de Gruyter Studies in Mathematics 5, Walter de Gruyter, 2003 | MR | Zbl
[4] Non abelian Reidemeister torsion and volume form on the -representation space of knot groups, Ann. Inst. Fourier, Volume 55 (2005), pp. 1685-1734 | DOI | Numdam | MR | Zbl
[5] Non abelian twisted Reidemeister torsion for fibered knots, Canad. Math. Bull., Volume 49 (2006), pp. 55-71 | DOI | MR | Zbl
[6] On the asymptotic expansion of the colored Jones polynomial for torus knots (to appear in Math. Ann., arXiv:math.GT/0510607)
[7] Deformations of dihedral representations, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 3039-3047 | DOI | MR | Zbl
[8] Chern-Simons invariants of -manifolds and representation spaces of knot groups, Math. Ann., Volume 287 (1990), pp. 343-367 | DOI | MR | Zbl
[9] Twisted Alexander Invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology, Volume 38 (1999), pp. 635-661 | DOI | MR | Zbl
[10] Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math., Volume 174 (1996), pp. 431-442 | MR | Zbl
[11] Representations of knot groups in , Trans. Amer. Math. Soc., Volume 326 (1991), pp. 795-828 | DOI | MR | Zbl
[12] Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | MR | Zbl
[13] Infinite cyclic coverings, Conference on the Topology of Manifolds (1968), pp. 115-133 | MR | Zbl
[14] Valuations, trees, and degenerations of hyperbolic structures, Ann. of Math. (2), Volume 120 (1984), pp. 401-476 | DOI | MR | Zbl
[15] Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc., Volume 128 (1997) no. 612, pp. x+139 | MR | Zbl
[16] Nonabelian representations of -bridge knot groups, Quart. J. Math. Oxford Ser. (2), Volume 35 (1984), pp. 191-208 | DOI | MR | Zbl
[17] Knots and links, Mathematics Lecture Series 7, Publish or Perish Inc., Houston, TX, 1990 | MR | Zbl
[18] Algebraic Topology, Springer-Verlag, New York-Berlin, 1981 | MR | Zbl
[19] Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001 | MR | Zbl
[20] Torsions of -dimensional manifolds, Progress in Mathematics 208, Birkhäuser Verlag, Basel, 2002 | MR | Zbl
[21] Twisted Alexander polynomial for finitely presentable groups, Topology, Volume 33 (1994), pp. 241-256 | DOI | MR | Zbl
[22] Limit values of the non-acyclic Reidemeister torsion for knots (arXiv:math.GT/0512277)
Cité par Sources :