The Leray measure of nodal sets for random eigenfunctions on the torus
Annales de l'Institut Fourier, Volume 58 (2008) no. 1, p. 299-335
We study nodal sets for typical eigenfunctions of the Laplacian on the standard torus in d2 dimensions. Making use of the multiplicities in the spectrum of the Laplacian, we put a Gaussian measure on the eigenspaces and use it to average over the eigenspace. We consider a sequence of eigenvalues with growing multiplicity 𝒩.The quantity that we study is the Leray, or microcanonical, measure of the nodal set. We show that the expected value of the Leray measure of an eigenfunction is constant, equal to 1/2π. Our main result is that the variance of Leray measure is asymptotically 1/4π𝒩, as 𝒩, at least in dimensions d=2 and d5
Nous étudions les ensembles nodaux des fonctions propres du Laplacien sur le tore standard de dimension d2. En utilisant la multiplicité du spectre du Laplacien et en introduisant une mesure gaussienne sur l’espace propre, nous nous servons de cette dernière afin d’évaluer des moyennes dans l’espace. Nous considérons une suite de valeurs propres ayant une multiplicité croissante 𝒩.La quantité que nous étudions est la mesure de Leray (mesure microcanonique). Nous montrons que la moyenne de la mesure de Leray pour une fonction propre est constante et qu’elle vaut 1/2π. Notre résultat principal précise que la variance de la mesure de Leray est asymptotiquement 1/4π𝒩 lorsque 𝒩 pour d=2 et d5.
DOI : https://doi.org/10.5802/aif.2351
Classification:  35P20
Keywords: Nodal sets, Leray measure, eigenfunctions of the Laplacian, trigonometric polynomials
@article{AIF_2008__58_1_299_0,
     author = {Oravecz, Ferenc and Rudnick, Ze\'ev and Wigman, Igor},
     title = {The Leray measure of nodal sets for random eigenfunctions on the torus},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {1},
     year = {2008},
     pages = {299-335},
     doi = {10.5802/aif.2351},
     zbl = {1153.35058},
     mrnumber = {2401223},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2008__58_1_299_0}
}
The Leray measure of nodal sets for random eigenfunctions on the torus. Annales de l'Institut Fourier, Volume 58 (2008) no. 1, pp. 299-335. doi : 10.5802/aif.2351. https://aif.centre-mersenne.org/item/AIF_2008__58_1_299_0/

[1] Bérard, P. Volume des ensembles nodaux des fonctions propres du laplacien, Bony-Sjostrand-Meyer seminar, 1984–1985, Tome 12 (1962), pp. 591-613 | Numdam | MR 1046051 | Zbl 0589.58033

[2] Berry, M. V. Regular and irregular semiclassical wavefunctions, J.Phys.A, Tome 10 (1977), pp. 2083-2091 | Article | MR 489542 | Zbl 0377.70014

[3] Berry, M. V. Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, J.Phys.A, Tome 35 (2002), pp. 3025-3038 | Article | MR 1913853 | Zbl 1044.81047

[4] Borovoi, M.; Rudnick, Z. Hardy-Littlewood varieties and semisimple groups, Inventiones Math, Tome 119 (1995), pp. 37-66 | Article | MR 1309971 | Zbl 0917.11025

[5] Bourgain, J. Eigenfunction bounds for the Laplacian on the n-torus, Internat. Math. Res. Notices, Tome 3 (1993), pp. 61-66 | Article | MR 1208826 | Zbl 0779.58039

[6] Cilleruelo, J. The distribution of the lattice points on circles, J. Number Theory, Tome 43 (1993) no. 2, pp. 198-202 | Article | MR 1207499 | Zbl 0777.11036

[7] Davenport, H. Analytic methods for Diophantine equations and Diophantine inequalities. Second edition. With a foreword by R. C. Vaughan, D. R. Heath-Brown and D. E. Freeman. Edited and prepared for publication by T. D. Browning., Cambridge Mathematical Library. Cambridge University Press,, Cambridge (2005) | MR 2152164 | Zbl 02138523

[8] Erdös, P.; Hall, R. R. On the angular distribution of Gaussian integers with fixed norm, Discrete Math., Tome 200, Paul Erdös memorial collection (1999), pp. 87-94 | Article | MR 1692282 | Zbl 1044.11073

[9] Fainsilber, L.; Kurlberg, P.; Wennberg, B. Lattice points on circles and discrete velocity models for the Boltzmann equation, SIAM J. Math. Anal., Tome 37 (2006) no. 6, pp. 1903-1922 | Article | MR 2213399 | Zbl 05029402

[10] Gelfand, I. M.; Shilov, G. E. Generalized functions. Vol. 1. Properties and operations. Translated from the Russian by Eugene Saletan., Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1964 [1977]) | MR 435831 | Zbl 0115.33101

[11] Kac, M. On the average number of real roots of a random algebraic equation, Bull. Amer. Math. Soc., Tome 49 (1943), p. 87-91, 938 | MR 7812 | Zbl 0060.28602

[12] Kátai, I.; Környei, I. On the distribution of lattice points on circles, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., Tome 19 (1977), pp. 87-91 | MR 506102 | Zbl 0348.10036

[13] Longuet-Higgins, M. S. The statistical analysis of a random, moving surface, Philos. Trans. Roy. Soc. London. Ser. A., Tome 249 (1957), pp. 321-387 | Article | MR 87257 | Zbl 0077.12707

[14] Longuet-Higgins, M. S. Statistical properties of an isotropic random surface, Philos. Trans. Roy. Soc. London. Ser. A., Tome 250 (1957), pp. 157-174 | Article | MR 91569 | Zbl 0078.32701

[15] Neuheisel, J. The asymptotic distribution of nodal sets on spheres, Johns Hopkins Ph.D. thesis (2000) (Ph. D. Thesis)

[16] Palamodov, V. P. Distributions and harmonic analysis, in Commutative harmonic analysis, Encyclopaedia Math. Sci., III (Havin and N.K. Nikol’skij, eds.), Tome 72 (1995), p. 1-127, 261–266 | Zbl 0826.46025

[17] Pommerenke, C. Über die Gleichverteilung von Gitterpunkten auf m-dimensionalen Ellipsoiden, erratum, Acta Arith., Tome 5,7 (1959,1961/1962), p. 115-137,279 | MR 122788 | Zbl 0089.26802

[18] Rudnick, Z.; Wigman, I. On the volume of nodal sets for eigenfunctions of the Laplacian on the torus (In preparation)

[19] Sogge, Christopher D. Fourier integrals in classical analysis, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 105 (1993) | MR 1205579 | Zbl 0783.35001

[20] Zelditch, S. A random matrix model for quantum mixing, Cambridge Tracts in Mathematics, Tome 3 (1996), pp. 115-137 | MR 1383753 | Zbl 0858.58048

[21] Zygmund, A. On Fourier coefficients and transforms of functions of two variables, Studia Math., Tome 12 (1974), pp. 189-201 | MR 387950 | Zbl 0278.42005