[Groupe de 3-variétés ordonnables]
On étudie l’ordonnabilité des groupes fondamentaux des variétés de dimension 3. Les groupes de nombreuses 3-variétés admettent un ordre invariant à gauche, y compris les groupes de toutes les variétés compactes -irréductibles dont le premier nombre de Betti est positif. Pour sept des huit géométries (toutes sauf l’hyperbolique) on caracterise exactement les variétés dont les groupes sont ordonnables à gauche, voire bi- ordonnables ; on démontre aussi qu’elles ont toutes des groupes virtuellement bi- ordonnables. L’ordonnabilité virtuelle en général, notamment pour les 3-variétés hyperboliques, est un problème qui reste ouvert et qui est lié à des conjectures de Waldhausen et d’autres auteurs.
We investigate the orderability properties of fundamental groups of 3-dimensional manifolds. Many 3-manifold groups support left-invariant orderings, including all compact -irreducible manifolds with positive first Betti number. For seven of the eight geometries (excluding hyperbolic) we are able to characterize which manifolds’ groups support a left-invariant or bi-invariant ordering. We also show that manifolds modelled on these geometries have virtually bi-orderable groups. The question of virtual orderability of 3-manifold groups in general, and even hyperbolic manifolds, remains open, and is closely related to conjectures of Waldhausen and others.
Keywords: 3-manifold, orderable group, LO-group
Mots-clés : 3 variétés, groupe ordonnable, groupe-LO
Boyer, Steven 1 ; Rolfsen, Dale  ; Wiest, Bert 
@article{AIF_2005__55_1_243_0, author = {Boyer, Steven and Rolfsen, Dale and Wiest, Bert}, title = {Orderable 3-manifold groups}, journal = {Annales de l'Institut Fourier}, pages = {243--288}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {1}, year = {2005}, doi = {10.5802/aif.2098}, zbl = {1068.57001}, mrnumber = {2141698}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2098/} }
TY - JOUR AU - Boyer, Steven AU - Rolfsen, Dale AU - Wiest, Bert TI - Orderable 3-manifold groups JO - Annales de l'Institut Fourier PY - 2005 SP - 243 EP - 288 VL - 55 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2098/ DO - 10.5802/aif.2098 LA - en ID - AIF_2005__55_1_243_0 ER -
%0 Journal Article %A Boyer, Steven %A Rolfsen, Dale %A Wiest, Bert %T Orderable 3-manifold groups %J Annales de l'Institut Fourier %D 2005 %P 243-288 %V 55 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2098/ %R 10.5802/aif.2098 %G en %F AIF_2005__55_1_243_0
Boyer, Steven; Rolfsen, Dale; Wiest, Bert. Orderable 3-manifold groups. Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 243-288. doi : 10.5802/aif.2098. https://aif.centre-mersenne.org/articles/10.5802/aif.2098/
[Ba] On generalised free products, Math. Z., Volume 78 (1962), pp. 423-438 | DOI | MR | Zbl
[Be1] Left-orderable groups which are not locally indicable, Pac. J. Math., Volume 147 (1991), pp. 243-248 | MR | Zbl
[Be2] Ordering coproducts of groups and semigroups, J. Algebra, Volume 133 (1990), pp. 313-339 | DOI | MR | Zbl
[BH] A note on group rings of certain torsion-free groups, Can. Math. Bull., Volume 15 (1972), pp. 441-445 | DOI | MR | Zbl
[Ca1] -covered foliations of hyperbolic 3-manifolds, Geometry and Topology, Volume 3 (1999), pp. 137-153 | DOI | MR | Zbl
[Ca2] The geometry of -covered foliations, Geom. Topol., Volume 4 (2000), pp. 457-515 | DOI | MR | Zbl
[CD] Laminations and groups of homeomorphisms of the circle, Invent. Math., Volume 152 (2003), pp. 149-207 | DOI | MR | Zbl
[CG] Limit groups as limits of free groups: compactifying the set of free groups (ArXiv math. GR/0401042, http://front.math.ucdavis.edu/math.GR/0401042)
[CJ] Convergence groups and Seifert fibered 3-manifolds, Invent. Math., Volume 118 (1994), pp. 441-456 | DOI | MR | Zbl
[CK] Soluble right orderable groups are locally indicable, Canad. Math. Bull., Volume 36 (1993), pp. 22-29 | DOI | MR | Zbl
[Co] Right-Ordered Groups, Michigan Math. J., Volume 6 (1959), pp. 267-275 | DOI | MR | Zbl
[De] Braid groups and left distributive operations, Trans. Amer. Math. Soc., Volume 345 (1994), pp. 115-150 | DOI | MR | Zbl
[DT] The virtual Haken conjecture: experiments and examples, Geom. Topol., Volume 7 (2003), pp. 399-441 | DOI | MR | Zbl
[Du] An equivariant sphere theorem, Bull. London Math. Soc., Volume 17 (1985), pp. 437-448 | DOI | MR | Zbl
[EHN] Transverse foliations on Seifert bundles and self-homeomorphisms of the circle, Comm. Math. Helv., Volume 56 (1981), pp. 638-660 | DOI | MR | Zbl
[Ep] Projective planes in 3-manifolds, Proc. LMS, Volume 11 (1961), pp. 469-484 | MR | Zbl
[Fa] Right-orderable deck transformation groups, Rocky Mtn. J. Math., Volume 6 (1976), pp. 441-447 | DOI | MR | Zbl
[Fe] Anosov flows in 3-manifolds, Ann. Math., Volume 139 (1992) no. 2, pp. 79-115 | MR | Zbl
[FGRRW] Ordering the braid groups, Pac. J. Math., Volume 191 (1999), pp. 49-74 | DOI | MR | Zbl
[G-M] Ordering pure braid groups on closed surfaces, Pac. J. Math., Volume 203 (2002), pp. 369-378 | DOI | MR | Zbl
[Ga1] Foliations and 3-manifolds (Proc. Int. Cong. Math.) (1990), pp. 609-619 | MR | Zbl
[Ga2] Convergence groups are Fuchsian groups, Ann. of Math., Volume 136 (1992), pp. 447-510 | DOI | MR | Zbl
[Ga3] Eight problems in the theory of foliations and laminations, Geometric Topology, 2, AMS/IP Studies in Advanced Mathematics, 1996 | MR
[GL] Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Math. USSR Sbornik, Volume 7 (1969), pp. 569-596 | DOI | MR | Zbl
[GS] Generalisations of free groups: some questions, Comm. Algebra, Volume 22 (1994), pp. 3159-3169 | DOI | MR | Zbl
[Ha] Notes on basic 3-manifold topology (, http://www.math.cornell.edu/hatcher)
[He] 3-manifolds, Ann. of Math Studies, Volume 86 (1976) | MR | Zbl
[HiSt] A course in homological algebra, GTM, 4, 1971 | MR | Zbl
[HoSh] The band-sum problem, J. London Math. Soc., Volume 31 (1985), pp. 571-576 | DOI | MR | Zbl
[Jc] Lectures on three-manifold topology (CBMS Regional Conf. Ser. Math.), Volume 43 (1980) | MR | Zbl
[Jn] The space of homomorphisms of a Fuchsian groups to (1983) (dissertation, University of Maryland) | MR
[JN1] Homomorphisms of Fuchsian groups to , Comm. Math. Helv., Volume 60 (1985), pp. 480-495 | DOI | MR | Zbl
[JN2] Rotation numbers and products of circle homomorphisms, Math. Ann., Volume 271 (1985), pp. 381-400 | DOI | EuDML | MR | Zbl
[KR] An ordering for groups of pure braids and fibre-type hyperplane arrangements, Canad. J. Math., Volume 55 (2003), pp. 822-838 | DOI | MR | Zbl
[Li] Left ordered amenable and locally indicable groups, J. London Math. Soc., Volume 60 (1999) no. 2, pp. 133-142 | MR | Zbl
[Lo] Planar kernels in surface groups, Quart. J. Math. Oxford, Volume 35 (1984) no. 2, pp. 305-310 | MR | Zbl
[LR] A remark on the group rings of order preserving permutation groups, Canad. Math. Bull, Volume 11 (1968), pp. 679-680 | DOI | MR | Zbl
[LS] Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, 1977 | MR | Zbl
[Lu] Finite covers of 3-manifolds containing essential tori, Trans. Amer. Math. Soc., Volume 310 (1988), pp. 381-391 | MR | Zbl
[Ma] On the embedding of group algebras in division algebras, Dokl. Akad. Nauk SSSR, Volume 60 (1948), p. 1944-1501 | MR | Zbl
[MKS] Combinatorial group theory, New York, 1976 | MR | Zbl
[MR] Orderable groups, Lecture notes in pure and applied mathematics, 27, New York-Basel, 1977 | MR | Zbl
[MSY] Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math., Volume 116 (1982) no. 2, pp. 621-659 | MR | Zbl
[Na] Foliations transverse to fibers of Seifert manifolds, Comm. Math. Helv., Volume 69 (1994), pp. 155-162 | DOI | EuDML | MR | Zbl
[Ne] On ordered division rings, Trans. Amer. Math. Soc., Volume 66 (1949), pp. 202-252 | DOI | MR | Zbl
[No] Topology of foliations, Trans. Moscow Math. Soc., Volume 14 (1965), pp. 268-304 | MR | Zbl
[Pa] The algebraic structure of group rings, Pure and applied mathematics, 1977 | MR | Zbl
[PR] On orderability of fibred knot groups (preprint) | MR | Zbl
[RoWi] Free group automorphisms, invariant orderings and applications, Algebraic and Geometric Topology, Volume 1 (2001), pp. 311-319 | DOI | EuDML | MR | Zbl
[RR] Local indicability in ordered groups, braids and elementary amenable groups (preprint) | MR | Zbl
[RS] Exceptional Seifert group actions on , J. Knot Th. Ram., Volume 8 (1999), pp. 241-247 | DOI | MR | Zbl
[RSS] Infinitely many hyperbolic 3-manifolds which contain no Reebless Foliation to appear (JAMS) | MR | Zbl
[RW] Order automatic mapping class groups, Pac. J. Math., Volume 194 (2000), pp. 209-227 | DOI | MR | Zbl
[RZ] Braids, ordered groups and zero divisors, J. Knot Theory and Ramifications, Volume 7 (1998), pp. 837-841 | DOI | MR | Zbl
[Sc1] Compact submanifolds of 3-manifolds, J. London Math. Soc., Volume 7 (1973), pp. 246-250 | DOI | MR | Zbl
[Sc2] The geometries of 3-manifolds, Bull. Lond. Math. Soc., Volume 15 (1983), pp. 401-487 | DOI | MR | Zbl
[Sc3] There are no fake Seifert fibre spaces with infinite , Ann. of Math., Volume 117 (1983), pp. 35-70 | DOI | MR | Zbl
[ScWa] Topological methods in group theory, Homological group theory (Lecture Note Cambridge Univ. Press), Volume 36 (1977), pp. 137-203 | MR | Zbl
[Seif] Topologie dreidimensionaler gefaserter Räume, Acta Math., Volume 60 (1933), pp. 147-238 | DOI | JFM | MR | Zbl
[Sm] Trivial knots with arbitrary projection, J. Austral. Math. Soc., Volume 7 (1967), pp. 481-489 | DOI | MR | Zbl
[SW] Orderings of mapping class groups after Thurston, Ens. Math., Volume 46 (2000), pp. 279-312 | MR | Zbl
[Th1] The geometry and topology of 3-manifolds, Lecture notes, 1977
[Th2] Three-manifolds, foliations and circles, I (1997) (preprint) | MR
[Tlf] The compact 3-manifolds covered by , Proc. Amer. Math. Soc., Volume 45 (1974), pp. 461-462 | MR | Zbl
[V] On the free product of ordered groups, Mat. Sb., Volume 67 (1949), pp. 163-168 | MR | Zbl
Cité par Sources :