Dans cet article on étudie les espaces de Hardy de type faible des fonctions harmoniques dans le demi-espace supérieur . On démontre la -intégrabilité des transformées d’intégrales singulières définies par les noyaux de Calderón-Zygmund. Cela généralise un résultat analogue pour les transformées de Riesz démontré par Alexandrov.
In this article we study the weak type Hardy space of harmonic functions in the upper half plane and we prove the -integrability of singular integral transforms defined by Calderón-Zygmund kernels. This generalizes the corresponding result for Riesz transforms proved by Alexandrov.
@article{AIF_1984__34_2_53_0, author = {Madan, Shobha}, title = {On the $A$-integrability of singular integral transforms}, journal = {Annales de l'Institut Fourier}, pages = {53--62}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {34}, number = {2}, year = {1984}, doi = {10.5802/aif.963}, zbl = {0527.46047}, mrnumber = {86b:44001}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.963/} }
TY - JOUR AU - Madan, Shobha TI - On the $A$-integrability of singular integral transforms JO - Annales de l'Institut Fourier PY - 1984 SP - 53 EP - 62 VL - 34 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.963/ DO - 10.5802/aif.963 LA - en ID - AIF_1984__34_2_53_0 ER -
Madan, Shobha. On the $A$-integrability of singular integral transforms. Annales de l'Institut Fourier, Tome 34 (1984) no. 2, pp. 53-62. doi : 10.5802/aif.963. https://aif.centre-mersenne.org/articles/10.5802/aif.963/
[1]Mat. Zametki, 30, n° 1 (1981).
,[2]Trigonometric Series, Pergamon, 1964.
,[3]Hp spaces of several variables, Acta. Math., 129 (1972), 137-193. | MR | Zbl
and ,[4]On a theorem of F and M. Riez and an identity of A. Wald, Indiana Univ. Math. J., 30 (1981), 589-605. | MR | Zbl
,[5]Poisson Integrals of absolutely continuous and other measures, (1983), to appear in Phil. Proc. Camb. Math. Soc. | Zbl
and ,[6]Singular Integrals and differentiability properties of functions, Princeton University Press (1970). | MR | Zbl
.Cité par Sources :