Dans cet article, je considère un revêtement riemannien. Je démontre que l’existence de la fonction de Green sur est équivalente au fait que , le groupe de revêtement, est “transient" (à condition que soit compacte).
In this paper I consider a covering of a Riemannian manifold . I prove that Green’s function exists on if any and only if the symmetric translation invariant random walks on the covering group are transient (under the assumption that is compact).
@article{AIF_1983__33_2_241_0, author = {Varopoulos, Nicolas Th.}, title = {Brownian motion and transient groups}, journal = {Annales de l'Institut Fourier}, pages = {241--261}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {33}, number = {2}, year = {1983}, doi = {10.5802/aif.926}, zbl = {0498.60012}, mrnumber = {84i:58130}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.926/} }
TY - JOUR AU - Varopoulos, Nicolas Th. TI - Brownian motion and transient groups JO - Annales de l'Institut Fourier PY - 1983 SP - 241 EP - 261 VL - 33 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.926/ DO - 10.5802/aif.926 LA - en ID - AIF_1983__33_2_241_0 ER -
Varopoulos, Nicolas Th. Brownian motion and transient groups. Annales de l'Institut Fourier, Tome 33 (1983) no. 2, pp. 241-261. doi : 10.5802/aif.926. https://aif.centre-mersenne.org/articles/10.5802/aif.926/
[1] Stochastic Integrals, Academic Press, 1969. | Zbl
,[2] Potential Theory and Diffusion on Riemannian manifolds, Zygmund 80th Birthday Volume, Chicago, 1981.
,[3] Springer Verlag Lecture Notes, n° 678.
et al.,[4] Springer Verlag Lecture Notes, n° 624.
et al.,[5]
, C. R. A. S., (1982), to appear.[6] Groups of polynomial growth and expanding maps, Publications Math. I.H.E.S., n° 53 (1981). | Numdam | MR | Zbl
,[7] Classical Harmonic Analysis and locally compact groups, Oxford Math. Monograph, (1968), O.U.P. | MR | Zbl
,[8] Zbl
, et , C. R. A. S., Paris, t. 285 (A), (1977), 1103-1104. |[9] On the upper estimate of the heat kernel of a complete Riemannian manifold, American J. Math., Vol. 103, n° 5 (1981), 1021-1063. | MR | Zbl
, and ,[10] A lower Bound of the heat kernel, Comm. on Pure and Appl. Math., Vol. XXXIV (1981), 465-480. | MR | Zbl
and ,[11] A note on curvature and fundamental group., J. Diff. Geom., 2 (1968), 1-7. | MR | Zbl
,[12] Winding of the plane Brownian motion (preprint). | Zbl
and ,[13] An introduction to Probability Theory and its Applications (3rd Edition), Wiley. | Zbl
,[14] Amenability and the Spectrum of the Laplacian, Bull. Amer. Math. Soc., Vol. 6, 87-89 (1982), n° 1. | MR | Zbl
,[15] Random walks on soluble Groups, Bull. Sci. Math. (to appear). | Zbl
,Cité par Sources :