Regular holomorphic images of balls
Annales de l'Institut Fourier, Tome 32 (1982) no. 2, pp. 23-36.

Pour toute variété complexe à n dimensions M qui est connexe, paracompacte et Hausdorff, il y a une submersion holomorphe de la boule unité B n de C n sur M qui est finie.

Every n-dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in C n under a finite holomorphic map that is locally biholomorphic.

@article{AIF_1982__32_2_23_0,
     author = {Fornaess, John Erik and Stout, Edgar Lee},
     title = {Regular holomorphic images of balls},
     journal = {Annales de l'Institut Fourier},
     pages = {23--36},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {32},
     number = {2},
     year = {1982},
     doi = {10.5802/aif.871},
     zbl = {0452.32008},
     mrnumber = {84h:32026},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.871/}
}
TY  - JOUR
AU  - Fornaess, John Erik
AU  - Stout, Edgar Lee
TI  - Regular holomorphic images of balls
JO  - Annales de l'Institut Fourier
PY  - 1982
SP  - 23
EP  - 36
VL  - 32
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.871/
DO  - 10.5802/aif.871
LA  - en
ID  - AIF_1982__32_2_23_0
ER  - 
%0 Journal Article
%A Fornaess, John Erik
%A Stout, Edgar Lee
%T Regular holomorphic images of balls
%J Annales de l'Institut Fourier
%D 1982
%P 23-36
%V 32
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.871/
%R 10.5802/aif.871
%G en
%F AIF_1982__32_2_23_0
Fornaess, John Erik; Stout, Edgar Lee. Regular holomorphic images of balls. Annales de l'Institut Fourier, Tome 32 (1982) no. 2, pp. 23-36. doi : 10.5802/aif.871. https://aif.centre-mersenne.org/articles/10.5802/aif.871/

[1] D. H. Bushnell, Mapping a polydisc onto a complex manifold, Senior Thesis, Princeton University, 1976 (Princeton University Library).

[2] J. E. Fornaess and E. L. Stout, Spreading polydiscs on complex manifolds, Amer. J. Math., 99 (1977), 933-960. | MR | Zbl

[3] J. E. Fornaess and E. L. Stout, Polydiscs in complex manifolds, Math. Ann., 227 (1977), 145-153. | MR | Zbl

[4] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970. | MR | Zbl

[5] A. I. Markushevich, Theory of Functions of a Complex Variable, vol. III, Prentice-Hall, Englewood Cliffs, 1967. | MR | Zbl

[6] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | MR | Zbl

Cité par Sources :