Every -dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in under a finite holomorphic map that is locally biholomorphic.
Pour toute variété complexe à dimensions qui est connexe, paracompacte et Hausdorff, il y a une submersion holomorphe de la boule unité de sur qui est finie.
@article{AIF_1982__32_2_23_0,
author = {Fornaess, John Erik and Stout, Edgar Lee},
title = {Regular holomorphic images of balls},
journal = {Annales de l'Institut Fourier},
pages = {23--36},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {32},
number = {2},
year = {1982},
doi = {10.5802/aif.871},
zbl = {0452.32008},
mrnumber = {84h:32026},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.871/}
}
TY - JOUR AU - Fornaess, John Erik AU - Stout, Edgar Lee TI - Regular holomorphic images of balls JO - Annales de l'Institut Fourier PY - 1982 SP - 23 EP - 36 VL - 32 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.871/ DO - 10.5802/aif.871 LA - en ID - AIF_1982__32_2_23_0 ER -
%0 Journal Article %A Fornaess, John Erik %A Stout, Edgar Lee %T Regular holomorphic images of balls %J Annales de l'Institut Fourier %D 1982 %P 23-36 %V 32 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.871/ %R 10.5802/aif.871 %G en %F AIF_1982__32_2_23_0
Fornaess, John Erik; Stout, Edgar Lee. Regular holomorphic images of balls. Annales de l'Institut Fourier, Tome 32 (1982) no. 2, pp. 23-36. doi: 10.5802/aif.871
[1] , Mapping a polydisc onto a complex manifold, Senior Thesis, Princeton University, 1976 (Princeton University Library).
[2] and , Spreading polydiscs on complex manifolds, Amer. J. Math., 99 (1977), 933-960. | Zbl | MR
[3] and , Polydiscs in complex manifolds, Math. Ann., 227 (1977), 145-153. | Zbl | MR
[4] , Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, New York, 1970. | Zbl | MR
[5] , Theory of Functions of a Complex Variable, vol. III, Prentice-Hall, Englewood Cliffs, 1967. | Zbl | MR
[6] , Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. | Zbl | MR
Cité par Sources :



