The commutator of multiplication by a function and a martingale transform of a certain type is a bounded operator on , , if and only if the function belongs to BMO. This is a martingale version of a result by Coifman, Rochberg and Weiss.
Le commutateur entre la multiplication par une fonction et une transformation des martingales d’un type certain est un opérateur borné sur , , si et seulement si la fonction appartient à BMO. C’est une analogie pour martingales d’un résultat de Coifman, Rochberg et Weiss.
@article{AIF_1981__31_1_265_0,
author = {Janson, Svante},
title = {BMO and commutators of martingale transforms},
journal = {Annales de l'Institut Fourier},
pages = {265--270},
year = {1981},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {31},
number = {1},
doi = {10.5802/aif.827},
zbl = {0437.42015},
mrnumber = {83b:60038},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.827/}
}
TY - JOUR AU - Janson, Svante TI - BMO and commutators of martingale transforms JO - Annales de l'Institut Fourier PY - 1981 SP - 265 EP - 270 VL - 31 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.827/ DO - 10.5802/aif.827 LA - en ID - AIF_1981__31_1_265_0 ER -
Janson, Svante. BMO and commutators of martingale transforms. Annales de l'Institut Fourier, Tome 31 (1981) no. 1, pp. 265-270. doi: 10.5802/aif.827
[1] , and , Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (1976), 611-635. | Zbl | MR
[2] and , Hp-spaces of several variables, Acta Math., 129 (1972), 137-193. | Zbl | MR
[3] , Characterizations of H1 by singular integral transforms on martingales and Rn, Math. Scand., 41 (1977), 140-152. | Zbl | MR
[4] , Mean oscillation and commutators of singular integral operators, Ark. Mat., 16 (1978), 263-270. | Zbl | MR
[5] , Compactness of operators of Hankel type, Tôhoku Math. J., 30 (1978), 163-171. | Zbl | MR
Cité par Sources :



