Ce papier porte sur l’étude mathématique d’une équation du type de Grad-Mercier qui décrit, dans certaines circonstances, l’équilibre d’un plasma confiné [H. Grad, P.N. Hu et D.C. Stevens, Proc. Nat. Acad. Sci. USA, 72,n10 (1975), 3789–3793, C. Mercier, Publication of Euratom, CEA, Luxembourg (1974), C. Mercier, Communications personnelles à R. Temam et aux auteurs]. Il s’agit de trouver une fonction “régulière” solution du système
où est un ouvert borné régulier de , et
L’opérateur non linéaire n’est ni monotone, ni local (ni même continu). Nous montrons l’existence, ou la non-existence, de solutions, selon les valeurs du paramètre . Cet article utilise des résultats antérieurs de l’un des auteurs [J. Mossino, Journal of Differential Equations] et il nécessite néanmoins de nouveaux arguments permettant de contourner la difficulté liée au manque de coercivité de l’opérateur. Une technique de symétrisation intervient ici de façon essentielle.
In this paper we are concerned with the mathematical study of an equation of the Grad-Mercier type which describes the equilibrium of a confined plasma, under some circumstances [H. Grad, P.N. Hu et D.C. Stevens, Proc. Nat. Acad. Sci. USA, 72,n10 (1975), 3789–3793, C. Mercier, Publication of Euratom, CEA, Luxembourg (1974), C. Mercier, Communications personnelles à R. Temam et aux auteurs]. The free boundary value-problem which we consider can be formulated as follows: to find a “regular" function satisfying
where is a bounded regular open set of , and
We note that the nonlinear operator is neither monotone, nor local (nor even continuous). The existence, or non existence, of solutions is proved according to the values of the parameter . Similar problems were studied in [J. Mossino, Journal of Differential Equations], nevertheless the present problem requires new arguments in order to overcome the difficulties due to the partial coerciveness of the operator. In the crucial step here, we use a technique of symmetrization.
@article{AIF_1979__29_4_127_0, author = {Gourgeon, H. and Mossino, Jacqueline}, title = {Sur un probl\`eme \`a fronti\`ere libre de la physique des plasmas}, journal = {Annales de l'Institut Fourier}, pages = {127--141}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {4}, year = {1979}, doi = {10.5802/aif.770}, zbl = {0405.35070}, mrnumber = {81f:82023}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.770/} }
TY - JOUR AU - Gourgeon, H. AU - Mossino, Jacqueline TI - Sur un problème à frontière libre de la physique des plasmas JO - Annales de l'Institut Fourier PY - 1979 SP - 127 EP - 141 VL - 29 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.770/ DO - 10.5802/aif.770 LA - fr ID - AIF_1979__29_4_127_0 ER -
%0 Journal Article %A Gourgeon, H. %A Mossino, Jacqueline %T Sur un problème à frontière libre de la physique des plasmas %J Annales de l'Institut Fourier %D 1979 %P 127-141 %V 29 %N 4 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.770/ %R 10.5802/aif.770 %G fr %F AIF_1979__29_4_127_0
Gourgeon, H.; Mossino, Jacqueline. Sur un problème à frontière libre de la physique des plasmas. Annales de l'Institut Fourier, Tome 29 (1979) no. 4, pp. 127-141. doi : 10.5802/aif.770. https://aif.centre-mersenne.org/articles/10.5802/aif.770/
[1] Sobolev spaces, Academic Press, New York, 1975. | MR | Zbl
,[2] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Applied Math., 12 (1959), 623-727. | MR | Zbl
, et ,[3] A free boundary problem arising in plasma physics, A paraître. | Zbl
et ,[4] A general rearrangement inequality for multiple integrals, J. Funct. Anal., 17 (1974), 227-237. | MR | Zbl
, et ,[5] Équivalence des formulations de R. Temam, H. Berestycki et H. Brezis pour un problème de frontière libre, C.R. Acad. Sc., Paris, 286 (1978), 153-155.
,[6] Quelques remarques sur une équation apparaissant en physique des plasmas, C.R. Acad. Sc., Paris, 286 (1978), 739-741. | MR | Zbl
,[7] Contribution à l'étude d'une équation apparaissant en physique des plasmas, Thèse de 3e cycle, Université de Paris VI, 1978.
,[8] Étude numérique de quelques problèmes non linéaires apparaissant en physique des plasmas, Thèse de 3e cycle, Université de Paris XI, Orsay, 1978. | MR | Zbl
,[9] Adiabatic evolution of plasma equilibrium, Proc. Nat. Acad. Sci U.S.A., 72, n° 10 (1975), 3789-3793.
, et ,[10] A free boundary Tokomak equilibrium, Comm. Pure Appl. Math., 27 (1974), 39-57. | MR | Zbl
, et ,[11] Inequalities in Mathematical Physics, Princeton University Press, Princeton N.J., (1951).
, et ,[12] The Magneto-hydrodynamic Approach to the Problem of Plasma Confinment in Closed Magnetic Configurations, Publication of Euratom C.E.A., Luxembourg (1974).
,[13] Communications personnelles à R. Teman et aux auteurs.
,[14] Étude de quelques problèmes non linéaires d'un type nouveau apparaissant en physique des plasmas, Thèse, Université de Paris XI, Orsay, 1977 (les résultats de cet ouvrage seront publiés dans [17] et [18]). | MR | Zbl
,[15] Certains problèmes non linéaires de la physique des plasmas, Mathematical Aspects of Finite Element Methods, Rome 1975, Lectures Notes in Mathematics, Berlin-Heidelberg-New York, Springer (1977). | Zbl
et ,[16] Solution variationnelle d'un problème non linéaire de la physique des plasmas, C.R. Acad. Sci., Série A, 285 (1977), 1033. | MR | Zbl
et ,[17] Application des inéquations quasi-variationnelles à quelques problèmes non linéaires de la physique des plasmas, Isr. J. of Math., 30, nos 1-2 (1978), 14-50. | MR | Zbl
,[18] Some nonlinear problems involving free boundary problems in plasma physics : applications of multivalued analysis, à paraître au Journal of Differential Equations. | Zbl
,[19] Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton N.J., 1951. | MR | Zbl
et ,[20] Sur un problème de valeur propre non linéaire et de frontière libre, C.R. Acad. Sc., Paris, 284, Série A (1977), 861-863. | MR | Zbl
,[21] Équations Elliptiques du second Ordre à Coefficient Discontinus, Presses de l'Université de Montréal, 1966. | MR | Zbl
,[22] A nonlinear eingenvalue problem : the shape at equilibrium of a confined plasma, Arch. Rat. Mech. Anal., 60 (1975), 51-73. | Zbl
,[23] Remarks on a free boundary value problem arising in plasma physics, Comm. Part. Diff. Equ., 2 (1977), 563-586. | MR | Zbl
,Cité par Sources :