On étudie sommairement la distribution des valeurs de ( : caractère de Dirichlet primitif réel) et on constate qu’on a en général ; on démontre par ailleurs que si , alors ( : conducteur de ; : constante positive effectivement calculable.
The paper gives a rough description of the distribution of values of (, a real primitive residue character), which usually lie under ; and a proof of the following theorem: if , then ( the conductor of ; , a positive, computable constant.
@article{AIF_1979__29_1_125_0,
author = {Joly, Jean-Ren\'e and Moser, Claude},
title = {Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$},
journal = {Annales de l'Institut Fourier},
pages = {125--135},
year = {1979},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {29},
number = {1},
doi = {10.5802/aif.730},
zbl = {0386.10026},
mrnumber = {80d:10060},
language = {fr},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.730/}
}
TY - JOUR
AU - Joly, Jean-René
AU - Moser, Claude
TI - Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$
JO - Annales de l'Institut Fourier
PY - 1979
SP - 125
EP - 135
VL - 29
IS - 1
PB - Institut Fourier
PP - Grenoble
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.730/
DO - 10.5802/aif.730
LA - fr
ID - AIF_1979__29_1_125_0
ER -
%0 Journal Article
%A Joly, Jean-René
%A Moser, Claude
%T Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$
%J Annales de l'Institut Fourier
%D 1979
%P 125-135
%V 29
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.730/
%R 10.5802/aif.730
%G fr
%F AIF_1979__29_1_125_0
Joly, Jean-René; Moser, Claude. Ordre de grandeur de $L(1,\chi )$ et de $L^{\prime }(1,\chi )$. Annales de l'Institut Fourier, Tome 29 (1979) no. 1, pp. 125-135. doi: 10.5802/aif.730
[1] , Improvement of a result of Linnik and Walfisz, Proc. London Math. Soc., 50 (1949), 423-429. | Zbl | MR
[2] , On the class number of the corpus P(√—k), Proc. Nat. Inst. Sc. India, 13 (1947), 197-200.
[3] , Multiplicative number theory, Markham, Chicago (1967). | Zbl | MR
[4] , On the size of L(1,χ), J. reine angew Math., 236 (1969), 26-36. | Zbl | MR
[5] , Zur Abschätzung von L(1,χ), Nachr. Akad. Wiss. Göttingen Math. Phys., (1964), 101-102. | Zbl | MR
[6] , Suites périodiques et inégalité de Polya, Bull. Sc. Math., 102 (1978), 3-13. | Zbl | MR
[7] , The size of L(1,χ) for real characters χ with prime modulus, J. Number Theory, 2 (1970), 58-73. | Zbl | MR
[8] , Elementary methods in the theory of L-functions, II, Acta Arithm., 31 (1976), 273-289. | Zbl | MR
[9] , On the class number of the corpus P(√—k), Proc. London Math. Soc., 28 (1927), 358-372. | JFM
[10] , Distribution des valeurs de L'(1,χ), Sém. Th. Nombres, Grenoble.
[11] , Littlewood bounds, Proc. Symp. Pure Math. A.M.S., Analytic Number Theory, XXIV (1973).
Cité par Sources :



