We show that a theorem of Rudin, concerning the sum of closed subspaces in a Banach space, has a converse. By means of an example we show that the result is in the nature of best possible.
Nous montrons qu’un théorème de Rudin, concernant la somme des sous-espaces fermés dans un espace de Banach, a une réciproque. Au moyen d’un exemple nous montrons que ce résultat a le caractère d’être le meilleur possible.
@article{AIF_1975__25_2_213_0,
author = {Stegenga, David},
title = {A note on spaces of type $H^\infty +C$},
journal = {Annales de l'Institut Fourier},
pages = {213--217},
year = {1975},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {25},
number = {2},
doi = {10.5802/aif.561},
zbl = {0301.46041},
mrnumber = {52 #11546},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.561/}
}
TY - JOUR AU - Stegenga, David TI - A note on spaces of type $H^\infty +C$ JO - Annales de l'Institut Fourier PY - 1975 SP - 213 EP - 217 VL - 25 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.561/ DO - 10.5802/aif.561 LA - en ID - AIF_1975__25_2_213_0 ER -
Stegenga, David. A note on spaces of type $H^\infty +C$. Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 213-217. doi: 10.5802/aif.561
[1] and , Past and future, Math. Scand., 21 (1967), 5-16. | Zbl
[2] , Spaces of Type H∞ + C, Annales de l'Institut Fourier, 25, 1 (1975), 99-125. | Zbl | Numdam
[3] , Projections on invariant subspaces, Proc. AMS, 13 (1962), 429-432. | Zbl
[4] , Generalized interpolation in H∞, Trans. Amer. Math. Soc., 127 (1967), 179-203. | Zbl
[5] , Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241-269. | Zbl
Cité par Sources :



