The three following examples are given: a bornological space containing a subspace of infinite countable codimension which is not quasi-barrelled, a quasi-barrelled -space containing a subspace of infinite countable codimension which is not -space, and bornological barrelled space which is not inductive limit of Baire space.
On y présente trois exemples : un espace bornologique qui contient un sous-espace de codimension infinie dénombrable non infratonnelé, un -espace infratonnelé qui contient un sous-espace de codimension infinie dénombrable qui n’est pas un -espace et un espace tonnelé bornologique qui n’est pas limite inductive d’espaces de Baire.
@article{AIF_1972__22_2_21_0,
author = {Valdivia, Manuel},
title = {Some examples on quasi-barrelled spaces},
journal = {Annales de l'Institut Fourier},
pages = {21--26},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {22},
number = {2},
year = {1972},
doi = {10.5802/aif.409},
zbl = {0226.46005},
mrnumber = {49 #1053},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.409/}
}
TY - JOUR AU - Valdivia, Manuel TI - Some examples on quasi-barrelled spaces JO - Annales de l'Institut Fourier PY - 1972 SP - 21 EP - 26 VL - 22 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.409/ DO - 10.5802/aif.409 LA - en ID - AIF_1972__22_2_21_0 ER -
Valdivia, Manuel. Some examples on quasi-barrelled spaces. Annales de l'Institut Fourier, Tome 22 (1972) no. 2, pp. 21-26. doi: 10.5802/aif.409
[1] , Éléments de Mathématiques, Livre V : Espaces vectoriels topologiques, (ch. III, ch. IV, ch. V), Paris (1964).
[2] , Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25, 50-55 (1952). | Zbl | MR
[3] , Sur les espaces (F) et (DF), Summa Brasil. Math., 3, 57-123 (1954). | Zbl | MR
[4] , Produits tensoriels topologiques et espaces nucléaires Mem. Math. Soc., 16 (1955). | Zbl | MR
[5] , Topological Vector Spaces I, Berlin-Heidelberg-New York, Springer (1969). | Zbl | MR
[6] , A hereditary property in locally convex spaces, Ann. Inst. Fourier, 21, 1-2 (1971). | Zbl | MR | Numdam
[7] , On final topologies, J. Reine angew. Math., 251, 193-199 (1971). | Zbl | MR
[8] , On D F spaces, Math. Ann., 191, 38-43 (1971). | Zbl | MR
[9] , A class of bornological barrelled spaces which are not ultrabornological, Math. Ann. 194, 43-51 (1971). | Zbl | MR
[10] , Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, 21, 3-13 (1971). | Zbl | MR | Numdam
Cité par Sources :



