[Sur la croissance homologique et les nombres de Betti $\ell ^2$ de $\operatorname{Out}(W_n)$)]
Let $n\ge 3$, and let $\operatorname{Out}(W_n)$ be the outer automorphism group of a free Coxeter group $W_n$ of rank $n$. We study the growth of the dimension of the homology groups (with coefficients in any field $\mathbb{K}$) along Farber sequences of finite-index subgroups of $\operatorname{Out}(W_n)$. We show that, in all degrees up to $\lfloor \frac{n}{2}\rfloor -1$, these Betti numbers grow sublinearly in the index of the subgroup. When $\mathbb{K}=\mathbb{Q}$, through Lück’s approximation theorem, this implies that all $\ell ^2$-Betti numbers of $\operatorname{Out}(W_n)$ vanish up to degree $\lfloor \frac{n}{2}\rfloor -1$. In contrast, in top dimension equal to $n-2$, an argument of Gaboriau and Noûs implies that the $\ell ^2$-Betti number does not vanish. We also prove that the torsion growth of the integral homology is sublinear. Our proof of these results relies on a recent method introduced by Abért, Bergeron, Frączyk and Gaboriau. A key ingredient is to show that a version of the complex of partial bases of $W_n$ has the homotopy type of a bouquet of spheres of dimension $\lfloor \frac{n}{2}\rfloor -1$.
Soit $n\ge 3$, et soit $\operatorname{Out}(W_n)$ le groupe des automorphismes extérieurs d’un groupe de Coxeter libre $W_n$ de rang $n$. Nous étudions la croissance de la dimension des groupes d’homologie (à coefficients dans un corps $\mathbb{K}$ arbitraire) le long de suites de Farber de sous-groupes d’indice fini de $\operatorname{Out}(W_n)$. Nous montrons qu’en tout degré inférieur à $\lfloor \frac{n}{2}\rfloor -1$, ces nombres de Betti croissent sous-linéairement avec l’indice du sous-groupe. Lorsque $\mathbb{K}=\mathbb{Q}$, nous en déduisons grâce au théorème d’approximation de Lück que les nombres de Betti $\ell ^2$ de $\operatorname{Out}(W_n)$ s’annulent jusqu’en degré $\lfloor \frac{n}{2}\rfloor -1$. Par contraste, en dimension maximale $n-2$, un argument de Gaboriau et Noûs assure que le nombre de Betti $\ell ^2$ est non nul.
Nous démontrons aussi que la croissance de la torsion de l’homologie à coefficients entiers est sous-linéaire. Notre démonstration de ces résultats repose sur une méthode récemment introduite par Abért, Bergeron, Frączyk et Gaboriau. Un ingrédient-clé est de montrer qu’une version du complexe des bases partielles de $W_n$ a le type d’homotopie d’un bouquet de sphères de dimension $\lfloor \frac{n}{2}\rfloor -1$.
Révisé le :
Accepté le :
Première publication :
Keywords: $\ell ^2$-Betti numbers, homology torsion growth, outer automorphisms of free Coxeter groups, outer space, complex of partial bases
Mots-clés : nombres de Betti $\ell ^2$, croissance de la torsion de l’homologie, automorphismes extérieurs de groupes de Coxeter libres, outre-espace, complexe des bases partielles
Gaboriau, Damien  1 ; Guerch, Yassine  2 ; Horbez, Camille  3
@unpublished{AIF_0__0_0_A37_0,
author = {Gaboriau, Damien and Guerch, Yassine and Horbez, Camille},
title = {On the homology growth and the $\ell ^2${-Betti} numbers of $\operatorname{Out}(W_n)$},
journal = {Annales de l'Institut Fourier},
year = {2026},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3749},
language = {en},
note = {Online first},
}
TY - UNPB
AU - Gaboriau, Damien
AU - Guerch, Yassine
AU - Horbez, Camille
TI - On the homology growth and the $\ell ^2$-Betti numbers of $\operatorname{Out}(W_n)$
JO - Annales de l'Institut Fourier
PY - 2026
PB - Association des Annales de l’institut Fourier
N1 - Online first
DO - 10.5802/aif.3749
LA - en
ID - AIF_0__0_0_A37_0
ER -
%0 Unpublished Work
%A Gaboriau, Damien
%A Guerch, Yassine
%A Horbez, Camille
%T On the homology growth and the $\ell ^2$-Betti numbers of $\operatorname{Out}(W_n)$
%J Annales de l'Institut Fourier
%D 2026
%V 0
%N 0
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3749
%G en
%F AIF_0__0_0_A37_0
Gaboriau, Damien; Guerch, Yassine; Horbez, Camille. On the homology growth and the $\ell ^2$-Betti numbers of $\operatorname{Out}(W_n)$. Annales de l'Institut Fourier, Online first, 22 p.
[1] On homology torsion growth, J. Eur. Math. Soc., Volume 27 (2025) no. 6, pp. 2293-2357 | DOI | Zbl | MR
[2] Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et topologie” en l’Honneur de Henri Cartan (Orsay, 1974) (Astérisque), Volume 32-33, Société Mathématique de France, 1976, pp. 43-72 | Zbl | Numdam | MR
[3] The Euler characteristic of , Comment. Math. Helv., Volume 95 (2020) no. 4, pp. 703-748 | DOI | Zbl | MR
[4] Homotopy type of the complex of free factors of a free group, Proc. Lond. Math. Soc. (3), Volume 121 (2020) no. 6, pp. 1737-1765 | DOI | Zbl | MR
[5] Connectivity of partial basis complexes of freely decomposable groups (2025) | arXiv
[6] -cohomology and group cohomology, Topology, Volume 25 (1986) no. 2, pp. 189-215 | DOI | Zbl | MR
[7] Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986) no. 1, pp. 91-119 | DOI | Zbl | MR
[8] The complex of partial bases for and finite generation of the Torelli subgroup of , Geom. Dedicata, Volume 164 (2013), pp. 139-153 | DOI | Zbl | MR
[9] On the top-dimensional -Betti numbers, Ann. Fac. Sci. Toulouse, Math. (6), Volume 30 (2022) no. 5, pp. 1121-1137 | DOI | Zbl | MR
[10] Topological methods in group theory, Graduate Texts in Mathematics, 243, Springer, 2008 | Zbl | DOI | MR
[11] Commensurations of the outer automorphism group of a universal Coxeter group, Groups Geom. Dyn., Volume 17 (2023) no. 3, pp. 923-983 | DOI | Zbl | MR
[12] Automorphismes du groupe des automorphismes d’un groupe de Coxeter universel, Algebr. Geom. Topol., Volume 24 (2024) no. 1, pp. 251-276 | DOI | Zbl | MR
[13] Deformation spaces of trees, Groups Geom. Dyn., Volume 1 (2007) no. 2, pp. 135-181 | DOI | Zbl | MR
[14] The outer space of a free product, Proc. Lond. Math. Soc. (3), Volume 94 (2007) no. 3, pp. 695-714 | DOI | Zbl | MR
[15] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math., Volume 84 (1986) no. 1, pp. 157-176 | DOI | Zbl | MR
[16] The Euler characteristic of the Whitehead automorphism group of a free product, Trans. Am. Math. Soc., Volume 359 (2007) no. 6, pp. 2577-2595 | DOI | Zbl | MR
[17] Equivariant outer space and automorphisms of free-by-finite groups, Comment. Math. Helv., Volume 68 (1993) no. 2, pp. 216-262 | DOI | Zbl | MR
[18] Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata, Volume 114 (2005), pp. 49-70 | DOI | Zbl | MR
[19] Approximating -invariants by their finite-dimensional analogues, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 455-481 | DOI | Zbl | MR
[20] Normal automorphisms of relatively hyperbolic groups, Trans. Am. Math. Soc., Volume 362 (2010) no. 11, pp. 6079-6103 | DOI | Zbl | MR
[21] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math., Volume 94 (1988) no. 1, pp. 53-80 | DOI | Zbl | MR
[22] The Gromov topology on -trees, Topology Appl., Volume 32 (1989) no. 3, pp. 197-221 | DOI | Zbl | MR
[23] Homotopy properties of the poset of nontrivial -subgroups of a group, Adv. Math., Volume 28 (1978) no. 2, pp. 101-128 | DOI | Zbl
[24] The complex of partial bases of a free group, Bull. Lond. Math. Soc., Volume 52 (2020) no. 1, pp. 109-120 | DOI | Zbl | MR
[25] The Steinberg character of a finite group with -pair, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968), Benjamin, 1969, pp. 213-221 | MR | Zbl
Cité par Sources :



