[Avatars des invariants de Margulis et actions propres]
In this article, we provide a necessary and sufficient criterion for proper actions on $\mathbb{H}^{n,n-1}$ in terms of certain special Anosov representations in $\mathsf {SO}(n,n)$. Moreover, we show that affine Anosov representations of any word hyperbolic group in $\mathsf {SO}(n,n-1)\ltimes \mathbb{R}^{2n-1}$ are infinitesimal versions of such special Anosov representations. Finally, using the above two results we interpret Margulis spacetimes as infinitesimal versions of quotient manifolds of $\mathbb{H}^{n,n-1}$.
In the appendix, we give a description of the appropriate cross-ratios in our setting and their infinitesimal versions.
Dans cet article, nous fournissons un critère nécessaire et suffisant pour des actions propres sur l’espace $\mathbb{H}^{n, n-1}$ en termes de certaines représentations Anosov spéciales dans le groupe $\mathsf {SO}(n,n)$. De plus, nous montrons que les représentations Anosov affines de tout groupe hyperbolique dans le groupe $\mathsf {SO}(n,n-1)\ltimes \mathbb{R}^{2n-1}$ sont des versions infinitésimales de ces représentations Anosov spéciales. Enfin, en utilisant les deux résultats ci-dessus, nous interprétons les espaces-temps de Margulis comme des versions infinitésimales de variétés quotientes de l’espace $\mathbb{H}^{n,n-1}$.
En annexe, nous donnons une description des birapports appropriés dans notre contexte et de leurs versions infinitésimales.
Révisé le :
Accepté le :
Première publication :
Keywords: Anosov representations, Proper actions, Margulis spacetimes
Mots-clés : Représentation Anosov, Action propres, Espaces-temps de Margulis
Ghosh, Sourav  1
@unpublished{AIF_0__0_0_A36_0,
author = {Ghosh, Sourav},
title = {Avatars of {Margulis} invariants and proper actions},
journal = {Annales de l'Institut Fourier},
year = {2026},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3748},
language = {en},
note = {Online first},
}
Ghosh, Sourav. Avatars of Margulis invariants and proper actions. Annales de l'Institut Fourier, Online first, 52 p.
[1] On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, J. Differ. Geom., Volume 60 (2002) no. 2, pp. 315-344 | MR | Zbl
[2] The Auslander conjecture for dimension less then 7 (2020) | arXiv | Zbl
[3] The structure of complete locally affine manifolds, Topology, Volume 3 (1964) no. suppl. 1, pp. 131-139 | MR | DOI | Zbl
[4] An Account of the Theory of Crystallographic Groups, Proc. Am. Math. Soc., Volume 16 (1965) no. 6, pp. 1230-1236 | Zbl | DOI | MR
[5] Flat Lorentz -manifolds, Memoirs of the American Mathematical Society, 30, American Mathematical Society, 1959, 60 pages | MR | Zbl
[6] Actions Propres sur les Espaces Homogenes Reductifs, Ann. Math., Volume 144 (1996) no. 2, pp. 315-347 | DOI | Zbl
[7] Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann., Volume 70 (1911) no. 3, pp. 297-336 | DOI | MR | Zbl
[8] Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich, Math. Ann., Volume 72 (1912) no. 3, pp. 400-412 | DOI | MR | Zbl
[9] Anosov representations and dominated splittings, J. Eur. Math. Soc., Volume 21 (2019) no. 11, pp. 3343-3414 | DOI | MR | Zbl
[10] Compact Clifford–Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | DOI | MR | Zbl
[11] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470, Springer, 2008, viii+75 pages (with a preface by David Ruelle, edited by Jean-René Chazottes) | MR | DOI | Zbl
[12] The pressure metric for Anosov representations, Geom. Funct. Anal., Volume 25 (2015) no. 4, pp. 1089-1179 | DOI | MR | Zbl
[13] A geometric proof of Bieberbach’s theorems on crystallographic groups, Enseign. Math. (2), Volume 31 (1985) no. 1-2, pp. 137-145 http://infoscience.epfl.ch/record/161406 | Zbl | MR
[14] Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse, Math., Volume 3 (1994) no. 2, pp. 161-221 | Numdam | DOI | Zbl | MR
[15] Strong marked isospectrality of affine Lorentzian groups, J. Differ. Geom., Volume 66 (2004) no. 3, pp. 437-452 | Zbl | MR
[16] Tameness of Margulis space-times with parabolics, Forum Math., Volume 35 (2023) no. 1, pp. 1-59 | DOI | Zbl | MR
[17] Topological tameness of Margulis spacetimes, Am. J. Math., Volume 139 (2017) no. 2, pp. 297-345 | DOI | MR | Zbl
[18] Limits of geometries, Trans. Am. Math. Soc., Volume 370 (2018) no. 9, pp. 6585-6627 | DOI | MR | Zbl
[19] Geometry and topology of complete Lorentz spacetimes of constant curvature, Ann. Sci. Éc. Norm. Supér. (4), Volume 49 (2016) no. 1, pp. 1-56 | MR | Numdam | Zbl
[20] Margulis spacetimes via the arc complex, Invent. Math., Volume 204 (2016) no. 1, pp. 133-193 | DOI | MR | Zbl
[21] Proper affine actions for right-angled Coxeter groups, Duke Math. J., Volume 169 (2020) no. 12, pp. 2231-2280 | DOI | MR | Zbl
[22] Affine actions with Hitchin linear part, Geom. Funct. Anal., Volume 29 (2019) no. 5, pp. 1369-1439 | DOI | MR | Zbl
[23] Fundamental polyhedra for Margulis space-times, Topology, Volume 31 (1992) no. 4, pp. 677-683 | DOI | MR | Zbl
[24] Linear holonomy of Margulis space-times, J. Differ. Geom., Volume 38 (1993) no. 3, pp. 679-690 | MR | Zbl
[25] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math., Inst. Hautes Étud. Sci., Volume 103 (2006), pp. 1-211 | DOI | MR | Numdam | Zbl
[26] Three-dimensional affine crystallographic groups, Adv. Math., Volume 47 (1983) no. 1, pp. 1-49 | DOI | MR | Zbl
[27] Differential geometry and Lie groups—a computational perspective, Geometry and Computing, 12, Springer, 2020, xv+777 pages | MR | Zbl
[28] Anosov structures on Margulis spacetimes, Groups Geom. Dyn., Volume 11 (2017) no. 2, pp. 739-775 | DOI | MR | Zbl
[29] The pressure metric on the Margulis multiverse, Geom. Dedicata, Volume 193 (2018), pp. 1-30 | DOI | MR | Zbl
[30] Isospectrality of Margulis–Smilga spacetimes for irreducible representations of real split semisimple Lie groups (2020) (to appear in Algebr. Geom. Topol.) | arXiv | Zbl
[31] Deformation of Fuchsian representations and proper affine actions (2023) | arXiv | Zbl
[32] Finite step Rigidity of Hitchin representations and special Margulis–Smilga spacetimes, Math. Ann., Volume 392 (2025) no. 2, pp. 1965-1993 | DOI | MR | Zbl
[33] Affine Anosov representations and proper actions, Int. Math. Res. Not., Volume 2023 (2023) no. 16, pp. 14334-14367 | DOI | MR | Zbl
[34] Geodesics in Margulis spacetimes, Ergodic Theory Dyn. Syst., Volume 32 (2012) no. 2, pp. 643-651 | DOI | MR | Zbl
[35] Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. Math. (2), Volume 170 (2009) no. 3, pp. 1051-1083 | DOI | MR | Zbl
[36] Flat Lorentz 3-Manifolds and Cocompact Fuchsian Groups, Crystallographic Groups and Their Generalizations: Workshop, Katholieke Universiteit Leuven Campus Kortrijk, Belgium, May 26-28, 1999 (Contemporary Mathematics), American Mathematical Society, 2000, pp. 135-145 | DOI | MR | Zbl
[37] Hyperbolic groups, Essays in group theory (Mathematical Sciences Research Institute Publications), Volume 8, Springer, 1987, pp. 75-263 | DOI | MR | Zbl
[38] Anosov representations and proper actions, Geom. Topol., Volume 21 (2017) no. 1, pp. 485-584 | DOI | MR | Zbl
[39] Maximally stretched laminations on geometrically finite hyperbolic manifolds, Geom. Topol., Volume 21 (2017) no. 2, pp. 693-840 | DOI | MR | Zbl
[40] Anosov representations: domains of discontinuity and applications, Invent. Math., Volume 190 (2012) no. 2, pp. 357-438 | DOI | MR | Zbl
[41] Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer, 2006 | MR
[42] Lie groups and Teichmüller space, Topology, Volume 31 (1992) no. 3, pp. 449-473 | DOI | MR | Zbl
[43] Matrix analysis, Cambridge University Press, 2013, xviii+643 pages | MR | Zbl
[44] Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math., Volume 3 (2017) no. 4, pp. 808-898 | DOI | MR | Zbl
[45] Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol., Volume 22 (2018) no. 1, pp. 157-234 | DOI | MR | Zbl
[46] Morse actions of discrete groups on symmetric spaces: local-to-global principle, Geom. Topol., Volume 29 (2025) no. 5, pp. 2343-2390 | DOI | MR | Zbl
[47] Deformation of proper actions on reductive homogeneous spaces, Math. Ann., Volume 353 (2012) no. 2, pp. 599-632 | DOI | MR | Zbl
[48] Eigenvalue gaps for hyperbolic groups and semigroups, J. Mod. Dyn., Volume 18 (2022), pp. 161-208 | DOI | MR | Zbl
[49] Affine action and Margulis invariant, J. Funct. Anal., Volume 219 (2005) no. 1, pp. 205-225 | DOI | MR | Zbl
[50] Proper action on a homogeneous space of reductive type, Math. Ann., Volume 285 (1989) no. 2, pp. 249-263 | DOI | MR | Zbl
[51] Conjectures on reductive homogeneous spaces, Mathematics going forward. Collected mathematical brushstrokes (Lecture Notes in Mathematics), Volume 2313, Springer, 2023, pp. 217-231 | DOI | Zbl
[52] The Euler characteristic of an affine space form is zero, Bull. Am. Math. Soc., Volume 81 (1975) no. 5, pp. 937-938 | DOI | MR | Zbl
[53] Proper actions and pseudo-Riemannian space forms, Adv. Math., Volume 40 (1981) no. 1, pp. 10-51 | DOI | MR | Zbl
[54] Fuchsian Affine Actions of Surface Groups, J. Differ. Geom., Volume 59 (2001) no. 1, pp. 15-31 | MR | Zbl
[55] Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | DOI | MR | Zbl
[56] Entropy and affine actions for surface groups, J. Topol., Volume 15 (2022) no. 3, pp. 1017-1033 | DOI | MR | Zbl
[57] Kohomologien dynamischer Systeme, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 1296-1320 | Zbl
[58] Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983) no. 4, pp. 785-788 | MR
[59] Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, Volume 134 (1984), pp. 190-205 | MR
[60] Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | DOI | MR
[61] On fundamental groups of complete affinely flat manifolds, Adv. Math., Volume 25 (1977) no. 2, pp. 178-187 | MR | DOI
[62] Flows and joins of metric spaces, Geom. Topol., Volume 9 (2005), pp. 403-482 | MR | Zbl | DOI
[63] Classification of semisimple symmetric spaces with proper -actions, J. Differ. Geom., Volume 94 (2013) no. 2, pp. 301-342 | MR
[64] Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press Inc., 1983, xiii+468 pages | MR
[65] Thermodynamic formalism. The mathematical structures of equilibrium statistical mechanics, Cambridge Mathematical Library, Cambridge University Press, 2004, xx+174 pages | DOI | MR
[66] Global stability of dynamical systems, Springer, 1987, xii+150 pages (with the collaboration of Albert Fathi and Rémi Langevin, translated from the French by Joseph Christy) | DOI | MR
[67] Proper affine actions on semisimple Lie algebras, Ann. Inst. Fourier, Volume 66 (2016) no. 2, pp. 785-831 | MR | Numdam | DOI
[68] Proper affine actions: a sufficient criterion, Math. Ann., Volume 382 (2022) no. 1-2, pp. 513-605 | DOI | MR
[69] Domains of discontinuity in oriented flag manifolds, J. Lond. Math. Soc. (2), Volume 106 (2022) no. 2, pp. 1380-1442 | DOI | MR
[70] Properly discontinuous group actions on affine homogeneous spaces, Tr. Mat. Inst. Steklova, Volume 292 (2016), pp. 268-279 | DOI | MR
[71] Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2002, x+322 pages (translated from the French original by Leila Schneps) | DOI | MR
Cité par Sources :



