[Fonctions zêta dynamiques pour les billards]
Let be the union of a finite collection of pairwise disjoint strictly convex compact obstacles. Let be the resonances of the Laplacian in the exterior of with Neumann or Dirichlet boundary condition on . For odd, is a distribution in and the Laplace transforms of the leading singularities of yield the dynamical zeta functions for Neumann and Dirichlet boundary conditions, respectively. These zeta functions play a crucial role in the analysis of the distribution of the resonances. Under a non-eclipse condition, for every we show that and admit a meromorphic continuation to the whole complex plane. In the particular case when the boundary is real analytic, by using a result of Fried [17], we prove that the function cannot be entire. Following Ikawa [29], this implies the existence of a strip containing an infinite number of resonances for the Dirichlet problem. Moreover, for we obtain a lower bound for the resonances lying in this strip.
Soit , et une union finie d’obstacles strictement convexes, compacts et deux à deux disjoints. Soient les résonances du Laplacien à l’extérieur de avec conditions aux limites de Neumann ou de Dirichlet sur . Pour impair, la formule définit une distribution de . Les transformées de Laplace des singularités principales de s’expriment comme des fonctions zêta dynamiques et , associées aux conditions aux limites de Neumann et Dirichlet, respectivement. Ces fonctions zêta jouent un rôle crucial dans l’analyse de la distribution des résonances. Sous une condition de non-éclipse, pour quelconque, nous montrons que et admettent un prolongement méromorphe à tout le plan complexe. Dans le cas particulier où la frontière est analytique réelle, en utilisant un résultat de Fried [17], nous prouvons que la fonction ne peut pas être entière. Ceci implique, d’après un résultat de Ikawa [29], l’existence d’une bande contenant un nombre infini de résonances pour le problème de Dirichlet. De plus, pour , nous obtenons une borne inférieure sur le nombre de résonances se trouvant dans cette bande.
Révisé le :
Accepté le :
Première publication :
Keywords: Dynamical zeta function, Billiard flow, Scattering Resonances, Modified Lax–Phillips conjecture
Mots-clés : Fonction zêta dynamique, Flot de billard, Résonances, Conjecture de Lax–Phillips modifiée
Chaubet, Yann 1 ; Petkov, Vesselin 2
@unpublished{AIF_0__0_0_A31_0, author = {Chaubet, Yann and Petkov, Vesselin}, title = {Dynamical zeta functions for billiards}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3743}, language = {en}, note = {Online first}, }
Chaubet, Yann; Petkov, Vesselin. Dynamical zeta functions for billiards. Annales de l'Institut Fourier, Online first, 56 p.
[1] Dynamical zeta functions and dynamical determinants for hyperbolic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 68, Springer, 2018 | MR | Zbl | DOI
[2] Geometry of multi-dimensional dispersing billiards, Geometric methods in dynamics. I (Astérisque), Volume 286, Société Mathématique de France, 2003, pp. 119-150 | Numdam | Zbl
[3] La relation de Poisson pour l’équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion, Commun. Partial Differ. Equations, Volume 7 (1982) no. 8, pp. 905-958 | DOI | MR | Zbl
[4] Experimental observation of the spectral gap in microwave n-disk systems, Phys. Rev. Lett., Volume 110 (2013) no. 16, 164102
[5] Leçons sur les progrès récents de la théorie de séries de Dirichlet, professées au Collège de France, Gauthier-Villars, 1933 | Zbl
[6] FBI Transform in Gevrey classes and Anosov flows, Astérisque, 456, Société Mathématique de France, 2025, 233 pages | Zbl
[7] The ergodic theory of Axiom A flows, Invent. Math., Volume 29 (1975) no. 3, pp. 181-202 | DOI | MR | Zbl
[8] Contrôle de l’équation des plaques en présence d’obstacles strictement convexes, Mémoire de la Société Mathématique de France, Nouvelle Série, 55, Société Mathématique de France, 1993, 126 pages | Numdam | MR
[9] Chaotic billiards, Mathematical Surveys and Monographs, 127, American Mathematical Society, 2006 | DOI | MR | Zbl
[10] Isolated invariant sets and isolating blocks, Trans. Am. Math. Soc., Volume 158 (1971) no. 1, pp. 35-61 | MR | Zbl | DOI
[11] Quantum fluids and classical determinants, Classical, Semiclassical and Quantum Dynamics in Atoms (Lecture Notes in Physics), Volume 485, Springer, 1997, pp. 29-62 | DOI | Zbl
[12] Resonances and weighted zeta functions for obstacle scattering via smooth models, Ann. Henri Poincaré, Volume 25 (2024) no. 2, pp. 1607-1656 | DOI | MR | Zbl
[13] Pollicott–Ruelle resonances for open systems, Ann. Henri Poincaré, Volume 17 (2016) no. 11, pp. 3089-3146 | DOI | MR | Zbl
[14] Dynamical zeta functions for Anosov flows via microlocal analysis, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 3, pp. 543-577 | DOI | MR | Numdam | Zbl
[15] Mathematical Theory of Scattering Resonances, Graduate Studies in Mathematics, 200, American Mathematical Society, 2019 | DOI | MR | Zbl
[16] The semiclassical zeta function for geodesic flows on negatively curved manifolds, Invent. Math., Volume 208 (2017) no. 3, pp. 851-998 | DOI | MR | Zbl
[17] Meromorphic zeta functions for analytic flows, Commun. Math. Phys., Volume 174 (1995) no. 1, pp. 161-190 | DOI | MR | Zbl
[18] Anosov flows and dynamical zeta functions, Ann. Math., Volume 178 (2013) no. 2, pp. 687-773 | DOI | Zbl
[19] Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties, J. Differ. Geom., Volume 79 (2008) no. 3, pp. 433-477 | MR | Zbl
[20] Boundary and lens rigidity for non-convex manifolds, Am. J. Math., Volume 143 (2021) no. 2, pp. 533-575 | DOI | Zbl
[21] Lectures on spectral theory of elliptic operators, Duke Math. J., Volume 44 (1977) no. 3, pp. 485-517 | Zbl | DOI
[22] The Poisson summation formula for manifolds with boundary, Adv. Math., Volume 32 (1979) no. 3, pp. 204-232 | Zbl | DOI | MR
[23] Hyperbolic dynamical systems, North-Holland, 2002, pp. 239-319
[24] Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, 1964, xiv+191 pages | MR | Zbl
[25] The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Grundlehren der Mathematischen Wissenschaften, 256, Springer, 1983, ix+391 pages | MR | Zbl
[26] On the poles of the scattering matrix for two strictly convex obstacles, J. Math. Kyoto Univ., Volume 23 (1983) no. 1, pp. 127-194 | MR | Zbl
[27] Trapping obstacles with a sequence of poles of the scattering matrix converging to the real axis, Osaka J. Math., Volume 22 (1985) no. 4, pp. 657-689 | Zbl | MR
[28] Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, Volume 38 (1988) no. 2, pp. 113-146 | DOI | Numdam | Zbl | MR
[29] On the existence of poles of the scattering matrix for several convex bodies, Proc. Japan Acad., Ser. A, Volume 64 (1988) no. 4, pp. 91-93 | MR | Zbl
[30] On the poles of the scattering matrix for several convex bodies, Algebraic analysis, Vol. I, Academic Press Inc., 1988, pp. 243-251 | Zbl | MR
[31] On the distribution of poles of the scattering matrix for several convex bodies, Functional-analytic methods for partial differential equations (Tokyo, 1989) (Lecture Notes in Mathematics), Volume 1450, Springer, 1990, pp. 210-225 | Zbl | DOI | MR
[32] Singular perturbation of symbolic flows and poles of the zeta functions, Osaka J. Math., Volume 27 (1990) no. 2, pp. 281-300 | MR | Zbl
[33] Singular perturbation of symbolic flows and poles of the zeta functions, Addentum, Osaka J. Math., Volume 29 (1992), pp. 161-174 | Zbl
[34] Counting Policott–Ruelle resonances for Axiom A flows, Commun. Math. Phys., Volume 406 (2025) no. 2, 26 | Zbl
[35] A local trace formula for Anosov flows, Ann. Henri Poincaré, Volume 18 (2017) no. 1, pp. 1-35 (with appendices by Frédéric Naud) | Zbl | DOI | MR
[36] Smoothness of the billiard ball map for strictly convex domains near the boundary, Proc. Am. Math. Soc., Volume 103 (1988) no. 3, pp. 856-860 | Zbl | DOI | MR
[37] Scattering theory, Pure and Applied Mathematics, 26, Academic Press Inc., 1989, xii+309 pages (with appendices by Cathleen S. Morawetz and Georg Schmidt) | Zbl | MR
[38] Quantum resonances in chaotic scattering, Chem. Phys. Lett., Volume 355 (2002) no. 1-2, pp. 201-205
[39] Generalization of the Hilbert metric to the space of positive definite matrices, Pac. J. Math., Volume 166 (1994) no. 2, pp. 339-355 | DOI | MR | Zbl
[40] Scattering theory and the trace of the wave group, J. Funct. Anal., Volume 45 (1982) no. 1, pp. 29-40 | DOI | MR | Zbl
[41] The symbolic representation of billiards without boundary condition, Trans. Am. Math. Soc., Volume 325 (1991) no. 2, pp. 819-828 | DOI | MR | Zbl
[42] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187-188, Société Mathématique de France, 1990, 268 pages | Numdam | Zbl
[43] Zur Theorie der Dirichletschen Reihen, J. Reine Angew. Math., Volume 134 (1908), pp. 95-143 | DOI | MR | Zbl
[44] Analytic singularities of the dynamical zeta function, Nonlinearity, Volume 12 (1999) no. 6, pp. 1663-1681 | DOI | MR | Zbl
[45] Lower bounds on the number of scattering poles for several strictly convex obstacles, Asymptotic Anal., Volume 30 (2002) no. 1, pp. 81-91 | DOI | Zbl | MR
[46] Dynamical zeta function for several strictly convex obstacles, Can. Math. Bull., Volume 51 (2008) no. 1, pp. 100-113 | DOI | MR | Zbl
[47] Geometry of the generalized geodesic flow and inverse spectral problems, John Wiley & Sons, 2017, xv+410 pages | Zbl | DOI | MR
[48] Weyl asymptotics: from closed to open systems, Phys. Rev. E, Volume 86 (2012) no. 6, 066205
[49] Meromorphic continuation of weighted zeta functions on open hyperbolic systems, Commun. Math. Phys., Volume 398 (2023) no. 2, pp. 655-678 | DOI | MR | Zbl
[50] A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory (Lucca, 1996) (NATO ASI Series. Series C. Mathematical and Physical Sciences), Volume 490, Kluwer Academic Publishers, 1997, pp. 377-437 | DOI | Zbl | MR
[51] Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Am. J. Math., Volume 123 (2001) no. 4, pp. 715-759 | DOI | MR | Zbl
[52] Scattering resonances for several small convex bodies and the Lax–Phillips conjecture, Memoirs of the American Mathematical Society, 199, American Mathematical Society, 2009 no. 933, vi+76 pages | Zbl
[53] Non-integrability of open billiard flows and Dolgopyat-type estimates, Ergodic Theory Dyn. Syst., Volume 32 (2012) no. 1, pp. 295-313 | DOI | MR | Zbl
[54] Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J., Volume 74 (1994) no. 1, pp. 1-17 | Zbl | DOI | MR
[55] Sharp bounds on the number of scattering poles in the two-dimensional case, Math. Nachr., Volume 170 (1994), pp. 287-297 | Zbl | DOI | MR
[56] Quantum mechanics and semiclassics of hyperbolic n-disk scattering systems, Phys. Rep., Volume 309 (1999) no. 1-2, pp. 1-116 | DOI | MR
[57] Poisson formulae for resonances, Séminaire sur les Équations aux Dérivées Partielles, 1996–1997, Éditions de l’École polytechnique, 1997 (Exp. No. XIII, 14p.) | Numdam | Zbl | MR
[58] Poisson formula for resonances in even dimensions, Asian J. Math., Volume 2 (1998) no. 3, pp. 609-617 | Zbl | DOI | MR
Cité par Sources :