Higher Rank Askey–Wilson Algebras as Skein Algebras
[Les algèbres d’Askey–Wilson de rang supérieur en tant qu’algèbres d’écheveaux]
Annales de l'Institut Fourier, Online first, 63 p.

In this paper we give a topological interpretation and diagrammatic calculus for the rank (n-2) Askey–Wilson algebra by proving there is an explicit isomorphism with the Kauffman bracket skein algebra of the (n+1)-punctured sphere. To do this we consider the Askey–Wilson algebra in the braided tensor product of n copies of either the quantum group 𝒰 q (𝔰𝔩 2 ) or the reflection equation algebra. We then use the isomorphism of the Kauffman bracket skein algebra of the (n+1)-punctured sphere with the 𝒰 q (𝔰𝔩 2 ) invariants of the Alekseev moduli algebra to complete the correspondence. We also find the graded vector space dimension of the 𝒰 q (𝔰𝔩 2 ) invariants of the Alekseev moduli algebra and apply this to finding a presentation of the skein algebra of the five-punctured sphere and hence also find a presentation for the rank 2 Askey–Wilson algebra.

Dans cet article, nous donnons une interprétation topologique et un calcul diagrammatique pour l’algèbre d’Askey–Wilson de rang n-2 en donnant un isomorphisme explicite avec l’algèbre d’écheveaux d’une sphère privée de n+1 points. Pour faire ceci, on considère l’algèbre d’Askey–Wilson comme sous-algèbre d’un produit tensoriel tressé de n copies soit du groupe quantique 𝒰 q (𝔰𝔩 2 ) soit de l’algèbre de l’équation de réflexion. On utilise ensuite l’isomorphisme de l’algèbre d’écheveaux de la sphère privée de n+1 points avec les invariants sous 𝒰 q (𝔰𝔩 2 ) de l’algèbre d’Aleeksev. On trouve également la dimension graduée de ces invariants et appliquons ceci pour trouver une présentation de l’algèbre d’écheveaux de la sphère privée de cinq points, ainsi que de l’algèbre d’Askey–Wilson de rang 2.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3729
Classification : 17B37, 57M27, 57N10
Keywords: Askey–Wilson algebras, Skein algebras
Mots-clés : Algèbres d’Askey–Wilson, Algèbres d’écheveaux

Cooke, Juliet 1 ; Lacabanne, Abel 2

1 School of Mathematical Sciences, University Park, Nottingham, NG7 2RD (United Kingdom)
2 Laboratoire de Mathématiques Blaise Pascal (UMR 6620), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 place Vasarely, 63178 Aubière Cedex (France)
@unpublished{AIF_0__0_0_A17_0,
     author = {Cooke, Juliet and Lacabanne, Abel},
     title = {Higher {Rank} {Askey{\textendash}Wilson} {Algebras} as {Skein} {Algebras}},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3729},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Cooke, Juliet
AU  - Lacabanne, Abel
TI  - Higher Rank Askey–Wilson Algebras as Skein Algebras
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3729
LA  - en
ID  - AIF_0__0_0_A17_0
ER  - 
%0 Unpublished Work
%A Cooke, Juliet
%A Lacabanne, Abel
%T Higher Rank Askey–Wilson Algebras as Skein Algebras
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3729
%G en
%F AIF_0__0_0_A17_0
Cooke, Juliet; Lacabanne, Abel. Higher Rank Askey–Wilson Algebras as Skein Algebras. Annales de l'Institut Fourier, Online first, 63 p.

[1] Alekseev, Anton Yu. Integrability in the Hamiltonian Chern–Simons theory, Algebra Anal., Volume 6 (1994) no. 2, pp. 53-66 | MR | Zbl

[2] Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker Combinatorial quantization of the Hamiltonian Chern–Simons theory. II, Commun. Math. Phys., Volume 174 (1996) no. 3, pp. 561-604 | DOI | MR | Zbl

[3] Baseilhac, Pascal Deformed Dolan–Grady relations in quantum integrable models, Nucl. Phys., B, Volume 709 (2005) no. 3, pp. 491-521 | DOI | MR | Zbl

[4] Baseilhac, Pascal; Belliard, Samuel The half-infinite XXZ chain in Onsager’s approach, Nucl. Phys., B, Volume 873 (2013) no. 3, pp. 550-584 | DOI | MR | Zbl

[5] Baseilhac, Pascal; Crampé, Nicolas; Pimenta, Rodrigo A. Higher rank classical analogs of the Askey–Wilson algebra from the sl N Onsager algebra, J. Math. Phys., Volume 60 (2019) no. 8, 081703, 13 pages | DOI | MR | Zbl

[6] Baseilhac, Pascal; Koizumi, Kozo A deformed analogue of Onsager’s symmetry in the XXZ open spin chain, J. Stat. Mech. Theory Exp., Volume 2005 (2005) no. 10, P10005, 15 pages | DOI | MR | Zbl

[7] Berest, Yuri; Samuelson, Peter Affine cubic surfaces and character varieties of knots, J. Algebra, Volume 500 (2018), pp. 644-690 | DOI | MR | Zbl

[8] Bergman, George M. The diamond lemma for ring theory, Adv. Math., Volume 29 (1978) no. 2, pp. 178-218 | DOI | MR | Zbl

[9] De Bie, Hendrik; De Clercq, Hadewijch; van de Vijver, Wouter The Higher Rank q-Deformed Bannai–Ito and Askey–Wilson Algebra, Commun. Math. Phys., Volume 374 (2020) no. 1, pp. 277-316 | DOI | MR | Zbl

[10] Brochier, Adrien; Jordan, David Fourier transform for quantum D-modules via the punctured torus mapping class group, Quantum Topol., Volume 8 (2017) no. 2, pp. 361-379 | DOI | MR | Zbl

[11] Bullock, Doug Rings of SL 2 (C)-characters and the Kauffman bracket skein module, Comment. Math. Helv., Volume 72 (1997) no. 4, pp. 521-542 | DOI | MR | Zbl

[12] Bullock, Doug A finite set of generators for the Kauffman bracket skein algebra, Math. Z., Volume 231 (1999) no. 1, pp. 91-101 | DOI | MR | Zbl

[13] Bullock, Doug; Frohman, Charles; Kania-Bartoszyńska, Joanna Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications, Volume 8 (1999) no. 3, pp. 265-277 | DOI | MR | Zbl

[14] Bullock, Doug; Przytycki, Józef H. Multiplicative structure of Kauffman bracket skein module quantizations, Proc. Am. Math. Soc., Volume 128 (2000) no. 3, pp. 923-931 | DOI | MR | Zbl

[15] Casselman, Bill Essays on representations of real groups: introduction to Lie algebras, 2017 (https://personal.math.ubc.ca/~cass/research/pdf/lalg.pdf)

[16] De Clercq, Hadewijch Higher rank relations for the Askey–Wilson and q-Bannai–Ito algebra, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 15 (2019), 099, 32 pages | DOI | MR | Zbl

[17] Cooke, Juliet Factorisation Homology and Skein Categories of Surfaces, Ph. D. Thesis, University of Edinburgh, Scotland (2019)

[18] Cooke, Juliet Kauffman skein algebras and quantum Teichmüller spaces via factorization homology, J. Knot Theory Ramifications, Volume 29 (2020) no. 14, 2050089, 54 pages | DOI | MR | Zbl

[19] Cooke, Juliet Excision of skein categories and factorisation homology, Adv. Math., Volume 414 (2023), 108848, 51 pages | DOI | MR | Zbl

[20] Costantino, Francesco; Lê, Thang T. Q. Stated skein algebras of surfaces, J. Eur. Math. Soc., Volume 24 (2022) no. 12, pp. 4063-4142 | DOI | MR | Zbl

[21] Crampé, Nicolas; Frappat, Luc; Gaboriaud, Julien; Poulain d’Andecy, Loïc; Ragoucy, Eric; Vinet, Luc The Askey–Wilson algebra and its avatars, J. Phys. A. Math. Theor., Volume 54 (2021) no. 6, 063001, 32 pages | DOI | MR | Zbl

[22] Crampé, Nicolas; Gaboriaud, Julien; Poulain d’Andecy, Loïc; Vinet, Luc Racah algebras, the centralizer Z n (𝔰𝔩 2 ) and its Hilbert–Poincaré series, Ann. Henri Poincaré, Volume 23 (2022) no. 7, pp. 2657-2682 | DOI | MR | Zbl

[23] Crampé, Nicolas; Gaboriaud, Julien; Vinet, Luc; Zaimi, Meri Revisiting the Askey–Wilson algebra with the universal R-matrix of U q (𝔰𝔩 2 ), J. Phys. A. Math. Theor., Volume 53 (2020) no. 5, 05LT01, 10 pages | DOI | MR | Zbl

[24] Donin, Joseph; Mudrov, Andrey I. Reflection equation, twist, and equivariant quantization, Isr. J. Math., Volume 136 (2003), pp. 11-28 | DOI | MR | Zbl

[25] Faitg, Matthieu Holonomy and (stated) skein algebras in combinatorial quantization (2020) (to appear in Quantum Topology) | arXiv

[26] Fiore, Gaetano; Steinacker, Harold; Wess, Julius Unbraiding the braided tensor product, J. Math. Phys., Volume 44 (2003) no. 3, pp. 1297-1321 | DOI | MR | Zbl

[27] Gunningham, Sam; Jordan, David; Safronov, Pavel The finiteness conjecture for skein modules, Invent. Math., Volume 232 (2023) no. 1, pp. 301-363 | DOI | MR | Zbl

[28] Haïoun, Benjamin Relating stated skein algebras and internal skein algebras, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 18 (2022), 042, 39 pages | DOI | MR | Zbl

[29] Hikami, Kazuhiro DAHA and skein algebra of surfaces: double-torus knots, Lett. Math. Phys., Volume 109 (2019) no. 10, pp. 2305-2358 | DOI | MR | Zbl

[30] Huang, Hau-Wen An embedding of the universal Askey–Wilson algebra into U q (𝔰𝔩 2 )U q (𝔰𝔩 2 )U q (𝔰𝔩 2 ), Nucl. Phys., B, Volume 922 (2017), pp. 401-434 | DOI | MR | Zbl

[31] Jantzen, Jens C. Lectures on quantum groups, Graduate Studies in Mathematics, 6, American Mathematical Society, 1996 | DOI | MR | Zbl

[32] Johnson-Freyd, Theo Heisenberg-picture quantum field theory, Representation theory, mathematical physics, and integrable systems (Progress in Mathematics), Volume 340, Birkhäuser, 2021, pp. 371-409 | DOI | MR | Zbl

[33] Joseph, Anthony; Letzter, Gail Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra, Volume 153 (1992) no. 2, pp. 289-318 | DOI | MR | Zbl

[34] Kauffman, Louis H.; Lins, Sóstenes L. Temperley–Lieb recoupling theory and invariants of 3-manifolds, Annals of Mathematics Studies, 134, Princeton University Press, 1994 | DOI | MR | Zbl

[35] Kirillov, Alexander Jr.; Tham, Ying Hong Factorization homology and 4D TQFT, Quantum Topol., Volume 13 (2022) no. 1, pp. 1-54 | DOI | MR | Zbl

[36] Klimyk, Anatoli; Schmüdgen, Konrad Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997 | DOI | MR | Zbl

[37] Koornwinder, Tom H. The relationship between Zhedanov’s algebra AW (3) and the double affine Hecke algebra in the rank one case, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 3 (2007), 063, 15 pages | DOI | MR | Zbl

[38] Kulish, Petr P. Yang–Baxter equation and reflection equations in integrable models, Low-dimensional models in statistical physics and quantum field theory (Schladming, 1995) (Lecture Notes in Physics), Volume 469, Springer, 1996, pp. 125-144 | DOI | MR | Zbl

[39] Lê, Thang T. Q. Triangular decomposition of skein algebras, Quantum Topol., Volume 9 (2018) no. 3, pp. 591-632 | DOI | MR | Zbl

[40] Lickorish, William B. R. Skeins and handlebodies, Pac. J. Math., Volume 159 (1993) no. 2, pp. 337-349 | DOI | MR | Zbl

[41] Lusztig, George Introduction to Quantum Groups, Modern Birkhäuser Classics, Birkhäuser, 2010 | DOI | MR | Zbl

[42] Majid, Shahn Braided groups and algebraic quantum field theories, Lett. Math. Phys., Volume 22 (1991) no. 3, pp. 167-175 | DOI | MR | Zbl

[43] Majid, Shahn Foundations of quantum group theory, Cambridge University Press, 1995 | DOI | MR | Zbl

[44] Masbaum, Gregor; Vogel, Pierre 3-valent graphs and the Kauffman bracket, Pac. J. Math., Volume 164 (1994) no. 2, pp. 361-381 | DOI | MR | Zbl

[45] Noumi, Masatoshi; Stokman, Jasper V. Askey–Wilson polynomials: an affine Hecke algebra approach, Laredo Lectures on Orthogonal Polynomials and Special Functions (Advances in the Theory of Special Functions and Orthogonal Polynomials), Nova Science Publishers, 2004, pp. 111-144 | MR | Zbl

[46] Post, Sarah; Walter, Anthony A higher rank extension of the Askey–Wilson Algebra (2017) | arXiv | Zbl

[47] Przytycki, Józef H.; Sikora, Adam S. On skein algebras and SL 2 (C)-character varieties, Topology, Volume 39 (2000) no. 1, pp. 115-148 | DOI | MR | Zbl

[48] Reshetikhin, Nikolai Yu.; Takhtadzhyan, Leon A.; Faddeev, Lyudvig D. Quantization of Lie groups and Lie algebras, Algebraic Analysis. Papers Dedicated to Professor Mikio Sato on the Occasion of his Sixtieth Birthday. Vol. 1 (Kashiwara, Masaki; Kawai, Takahiro, eds.), Academic Press Inc., 1988, pp. 129-139 | DOI | MR | Zbl

[49] Terwilliger, Paul Two relations that generalize the q-Serre relations and the Dolan–Grady relations, Physics and combinatorics 1999 (Nagoya), World Scientific, 2001, pp. 377-398 | DOI | MR | Zbl

[50] Terwilliger, Paul The Universal Askey–Wilson Algebra, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 7 (2011), 069, 24 pages | MR | Zbl

[51] Terwilliger, Paul The universal Askey–Wilson algebra and DAHA of type (C 1 ,C 1 ), SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 9 (2013), 047, 40 pages | DOI | MR | Zbl

[52] Terwilliger, Paul; Vidunas, Raimundas Leonard pairs and the Askey–Wilson relations, J. Algebra Appl., Volume 3 (2004) no. 4, pp. 411-426 | DOI | MR | Zbl

[53] Uchiyama, Masaru; Sasamoto, Tomohiro; Wadati, Miki Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials, J. Phys. A. Math. Gen., Volume 37 (2004) no. 18, pp. 4985-5002 | DOI | MR | Zbl

[54] Voigt, Christian; Yuncken, Robert Complex semisimple quantum groups and representation theory, Lecture Notes in Mathematics, 2264, Springer, 2020 | DOI | MR | Zbl

[55] Walker, Kevin TQFTs [early incomplete draft] (2006) (http://canyon23.net/math/tc.pdf)

[56] Zhedanov, Alexei S. “Hidden symmetry” of Askey–Wilson polynomials, Teor. Mat. Fiz., Volume 89 (1991) no. 2, pp. 190-204 | DOI | MR | Zbl

Cité par Sources :