[Les algèbres d’Askey–Wilson de rang supérieur en tant qu’algèbres d’écheveaux]
In this paper we give a topological interpretation and diagrammatic calculus for the rank Askey–Wilson algebra by proving there is an explicit isomorphism with the Kauffman bracket skein algebra of the -punctured sphere. To do this we consider the Askey–Wilson algebra in the braided tensor product of copies of either the quantum group or the reflection equation algebra. We then use the isomorphism of the Kauffman bracket skein algebra of the -punctured sphere with the invariants of the Alekseev moduli algebra to complete the correspondence. We also find the graded vector space dimension of the invariants of the Alekseev moduli algebra and apply this to finding a presentation of the skein algebra of the five-punctured sphere and hence also find a presentation for the rank Askey–Wilson algebra.
Dans cet article, nous donnons une interprétation topologique et un calcul diagrammatique pour l’algèbre d’Askey–Wilson de rang en donnant un isomorphisme explicite avec l’algèbre d’écheveaux d’une sphère privée de points. Pour faire ceci, on considère l’algèbre d’Askey–Wilson comme sous-algèbre d’un produit tensoriel tressé de copies soit du groupe quantique soit de l’algèbre de l’équation de réflexion. On utilise ensuite l’isomorphisme de l’algèbre d’écheveaux de la sphère privée de points avec les invariants sous de l’algèbre d’Aleeksev. On trouve également la dimension graduée de ces invariants et appliquons ceci pour trouver une présentation de l’algèbre d’écheveaux de la sphère privée de cinq points, ainsi que de l’algèbre d’Askey–Wilson de rang .
Révisé le :
Accepté le :
Première publication :
Keywords: Askey–Wilson algebras, Skein algebras
Mots-clés : Algèbres d’Askey–Wilson, Algèbres d’écheveaux
Cooke, Juliet 1 ; Lacabanne, Abel 2
@unpublished{AIF_0__0_0_A17_0, author = {Cooke, Juliet and Lacabanne, Abel}, title = {Higher {Rank} {Askey{\textendash}Wilson} {Algebras} as {Skein} {Algebras}}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3729}, language = {en}, note = {Online first}, }
Cooke, Juliet; Lacabanne, Abel. Higher Rank Askey–Wilson Algebras as Skein Algebras. Annales de l'Institut Fourier, Online first, 63 p.
[1] Integrability in the Hamiltonian Chern–Simons theory, Algebra Anal., Volume 6 (1994) no. 2, pp. 53-66 | MR | Zbl
[2] Combinatorial quantization of the Hamiltonian Chern–Simons theory. II, Commun. Math. Phys., Volume 174 (1996) no. 3, pp. 561-604 | DOI | MR | Zbl
[3] Deformed Dolan–Grady relations in quantum integrable models, Nucl. Phys., B, Volume 709 (2005) no. 3, pp. 491-521 | DOI | MR | Zbl
[4] The half-infinite XXZ chain in Onsager’s approach, Nucl. Phys., B, Volume 873 (2013) no. 3, pp. 550-584 | DOI | MR | Zbl
[5] Higher rank classical analogs of the Askey–Wilson algebra from the Onsager algebra, J. Math. Phys., Volume 60 (2019) no. 8, 081703, 13 pages | DOI | MR | Zbl
[6] A deformed analogue of Onsager’s symmetry in the open spin chain, J. Stat. Mech. Theory Exp., Volume 2005 (2005) no. 10, P10005, 15 pages | DOI | MR | Zbl
[7] Affine cubic surfaces and character varieties of knots, J. Algebra, Volume 500 (2018), pp. 644-690 | DOI | MR | Zbl
[8] The diamond lemma for ring theory, Adv. Math., Volume 29 (1978) no. 2, pp. 178-218 | DOI | MR | Zbl
[9] The Higher Rank -Deformed Bannai–Ito and Askey–Wilson Algebra, Commun. Math. Phys., Volume 374 (2020) no. 1, pp. 277-316 | DOI | MR | Zbl
[10] Fourier transform for quantum -modules via the punctured torus mapping class group, Quantum Topol., Volume 8 (2017) no. 2, pp. 361-379 | DOI | MR | Zbl
[11] Rings of -characters and the Kauffman bracket skein module, Comment. Math. Helv., Volume 72 (1997) no. 4, pp. 521-542 | DOI | MR | Zbl
[12] A finite set of generators for the Kauffman bracket skein algebra, Math. Z., Volume 231 (1999) no. 1, pp. 91-101 | DOI | MR | Zbl
[13] Understanding the Kauffman bracket skein module, J. Knot Theory Ramifications, Volume 8 (1999) no. 3, pp. 265-277 | DOI | MR | Zbl
[14] Multiplicative structure of Kauffman bracket skein module quantizations, Proc. Am. Math. Soc., Volume 128 (2000) no. 3, pp. 923-931 | DOI | MR | Zbl
[15] Essays on representations of real groups: introduction to Lie algebras, 2017 (https://personal.math.ubc.ca/~cass/research/pdf/lalg.pdf)
[16] Higher rank relations for the Askey–Wilson and -Bannai–Ito algebra, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 15 (2019), 099, 32 pages | DOI | MR | Zbl
[17] Factorisation Homology and Skein Categories of Surfaces, Ph. D. Thesis, University of Edinburgh, Scotland (2019)
[18] Kauffman skein algebras and quantum Teichmüller spaces via factorization homology, J. Knot Theory Ramifications, Volume 29 (2020) no. 14, 2050089, 54 pages | DOI | MR | Zbl
[19] Excision of skein categories and factorisation homology, Adv. Math., Volume 414 (2023), 108848, 51 pages | DOI | MR | Zbl
[20] Stated skein algebras of surfaces, J. Eur. Math. Soc., Volume 24 (2022) no. 12, pp. 4063-4142 | DOI | MR | Zbl
[21] The Askey–Wilson algebra and its avatars, J. Phys. A. Math. Theor., Volume 54 (2021) no. 6, 063001, 32 pages | DOI | MR | Zbl
[22] Racah algebras, the centralizer and its Hilbert–Poincaré series, Ann. Henri Poincaré, Volume 23 (2022) no. 7, pp. 2657-2682 | DOI | MR | Zbl
[23] Revisiting the Askey–Wilson algebra with the universal -matrix of , J. Phys. A. Math. Theor., Volume 53 (2020) no. 5, 05LT01, 10 pages | DOI | MR | Zbl
[24] Reflection equation, twist, and equivariant quantization, Isr. J. Math., Volume 136 (2003), pp. 11-28 | DOI | MR | Zbl
[25] Holonomy and (stated) skein algebras in combinatorial quantization (2020) (to appear in Quantum Topology) | arXiv
[26] Unbraiding the braided tensor product, J. Math. Phys., Volume 44 (2003) no. 3, pp. 1297-1321 | DOI | MR | Zbl
[27] The finiteness conjecture for skein modules, Invent. Math., Volume 232 (2023) no. 1, pp. 301-363 | DOI | MR | Zbl
[28] Relating stated skein algebras and internal skein algebras, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 18 (2022), 042, 39 pages | DOI | MR | Zbl
[29] DAHA and skein algebra of surfaces: double-torus knots, Lett. Math. Phys., Volume 109 (2019) no. 10, pp. 2305-2358 | DOI | MR | Zbl
[30] An embedding of the universal Askey–Wilson algebra into , Nucl. Phys., B, Volume 922 (2017), pp. 401-434 | DOI | MR | Zbl
[31] Lectures on quantum groups, Graduate Studies in Mathematics, 6, American Mathematical Society, 1996 | DOI | MR | Zbl
[32] Heisenberg-picture quantum field theory, Representation theory, mathematical physics, and integrable systems (Progress in Mathematics), Volume 340, Birkhäuser, 2021, pp. 371-409 | DOI | MR | Zbl
[33] Local finiteness of the adjoint action for quantized enveloping algebras, J. Algebra, Volume 153 (1992) no. 2, pp. 289-318 | DOI | MR | Zbl
[34] Temperley–Lieb recoupling theory and invariants of -manifolds, Annals of Mathematics Studies, 134, Princeton University Press, 1994 | DOI | MR | Zbl
[35] Factorization homology and 4D TQFT, Quantum Topol., Volume 13 (2022) no. 1, pp. 1-54 | DOI | MR | Zbl
[36] Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997 | DOI | MR | Zbl
[37] The relationship between Zhedanov’s algebra and the double affine Hecke algebra in the rank one case, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 3 (2007), 063, 15 pages | DOI | MR | Zbl
[38] Yang–Baxter equation and reflection equations in integrable models, Low-dimensional models in statistical physics and quantum field theory (Schladming, 1995) (Lecture Notes in Physics), Volume 469, Springer, 1996, pp. 125-144 | DOI | MR | Zbl
[39] Triangular decomposition of skein algebras, Quantum Topol., Volume 9 (2018) no. 3, pp. 591-632 | DOI | MR | Zbl
[40] Skeins and handlebodies, Pac. J. Math., Volume 159 (1993) no. 2, pp. 337-349 | DOI | MR | Zbl
[41] Introduction to Quantum Groups, Modern Birkhäuser Classics, Birkhäuser, 2010 | DOI | MR | Zbl
[42] Braided groups and algebraic quantum field theories, Lett. Math. Phys., Volume 22 (1991) no. 3, pp. 167-175 | DOI | MR | Zbl
[43] Foundations of quantum group theory, Cambridge University Press, 1995 | DOI | MR | Zbl
[44] -valent graphs and the Kauffman bracket, Pac. J. Math., Volume 164 (1994) no. 2, pp. 361-381 | DOI | MR | Zbl
[45] Askey–Wilson polynomials: an affine Hecke algebra approach, Laredo Lectures on Orthogonal Polynomials and Special Functions (Advances in the Theory of Special Functions and Orthogonal Polynomials), Nova Science Publishers, 2004, pp. 111-144 | MR | Zbl
[46] A higher rank extension of the Askey–Wilson Algebra (2017) | arXiv | Zbl
[47] On skein algebras and -character varieties, Topology, Volume 39 (2000) no. 1, pp. 115-148 | DOI | MR | Zbl
[48] Quantization of Lie groups and Lie algebras, Algebraic Analysis. Papers Dedicated to Professor Mikio Sato on the Occasion of his Sixtieth Birthday. Vol. 1 (Kashiwara, Masaki; Kawai, Takahiro, eds.), Academic Press Inc., 1988, pp. 129-139 | DOI | MR | Zbl
[49] Two relations that generalize the -Serre relations and the Dolan–Grady relations, Physics and combinatorics 1999 (Nagoya), World Scientific, 2001, pp. 377-398 | DOI | MR | Zbl
[50] The Universal Askey–Wilson Algebra, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 7 (2011), 069, 24 pages | MR | Zbl
[51] The universal Askey–Wilson algebra and DAHA of type , SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 9 (2013), 047, 40 pages | DOI | MR | Zbl
[52] Leonard pairs and the Askey–Wilson relations, J. Algebra Appl., Volume 3 (2004) no. 4, pp. 411-426 | DOI | MR | Zbl
[53] Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials, J. Phys. A. Math. Gen., Volume 37 (2004) no. 18, pp. 4985-5002 | DOI | MR | Zbl
[54] Complex semisimple quantum groups and representation theory, Lecture Notes in Mathematics, 2264, Springer, 2020 | DOI | MR | Zbl
[55] TQFTs [early incomplete draft] (2006) (http://canyon23.net/math/tc.pdf)
[56] “Hidden symmetry” of Askey–Wilson polynomials, Teor. Mat. Fiz., Volume 89 (1991) no. 2, pp. 190-204 | DOI | MR | Zbl
Cité par Sources :