Return of the plane evolute
[Retour de la développée plane]
Annales de l'Institut Fourier, Online first, 67 p.

Nous considérons les développées des courbes algébriques réelles planes et discutons certaines de leurs propriétés dans le cas complexe et réel. En particulier, pour un degré donné d2, nous fournissons des bornes inférieures pour les quatre invariants numériques suivants :

En particulier, pour un degré donné d2, nous fournissons des bornes inférieures pour les quatre invariants numériques suivants :

  • (1) le nombre maximal de fois qu’une droite réelle peut intersecter la développée d’une courbe algébrique réelle de degré d ;
  • (2) le nombre maximal de points de rebroussement réels pouvant survenir sur la développée d’une courbe algébrique réelle de degré d ;
  • (3) le nombre maximal de points double ordinaires pouvant survenir sur la courbe duale à la développée d’une courbe algébrique réelle de degré d ;
  • (4) le nombre maximal de points double ordinaires pouvant survenir sur la développée d’une courbe algébrique réelle de degré d.

We consider the evolutes of plane real-algebraic curves and discuss some of their complex and real-algebraic properties. In particular, for a given degree d2, we provide lower bounds for the following four numerical invariants:

  • (1) the maximal number of times a real line can intersect the evolute of a real-algebraic curve of degree d;
  • (2) the maximal number of real cusps which can occur on the evolute of a real-algebraic curve of degree d;
  • (3) the maximal number of crunodes which can occur on the dual curve to the evolute of a real-algebraic curve of degree d;
  • (4) the maximal number of crunodes which can occur on the evolute of a real-algebraic curve of degree d.
Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3703
Classification : 14H50, 51A50, 51M05
Keywords: evolute, plane real algebraic curve
Mots-clés : développée, courbe algébrique réelle plane

Piene, Ragni 1 ; Riener, Cordian 2 ; Shapiro, Boris 3

1 Department of Mathematics, University of Oslo, NO-0316 Oslo (Norway)
2 Department of Mathematics and Statistics, UiT The Arctic University of Norway, NO-9037 Tromsø(Norway)
3 Department of Mathematics, Stockholm University, SE-106 91, Stockholm (Sweden)
@unpublished{AIF_0__0_0_A133_0,
     author = {Piene, Ragni and Riener, Cordian and Shapiro, Boris},
     title = {Return of the plane evolute},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3703},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Piene, Ragni
AU  - Riener, Cordian
AU  - Shapiro, Boris
TI  - Return of the plane evolute
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3703
LA  - en
ID  - AIF_0__0_0_A133_0
ER  - 
%0 Unpublished Work
%A Piene, Ragni
%A Riener, Cordian
%A Shapiro, Boris
%T Return of the plane evolute
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3703
%G en
%F AIF_0__0_0_A133_0
Piene, Ragni; Riener, Cordian; Shapiro, Boris. Return of the plane evolute. Annales de l'Institut Fourier, Online first, 67 p.

[1] Arnol’d, Vladimir I. Huygens and Barrow, Newton and Hooke. Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals, Birkhäuser, 1990, 118 pages (translated from the Russian by Eric J. F. Primrose) | Zbl

[2] Arnol’d, Vladimir I. Topological invariants of plane curves and caustics, University Lecture Series, 5, American Mathematical Society, 1994 (Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, New Jersey) | MR | Zbl

[3] Baillif, Mathieu Curves of constant diameter and inscribed polygons, Elem. Math., Volume 64 (2009) no. 3, pp. 102-108 | DOI | MR | Zbl

[4] Brugallé, Erwan; De Medrano, Lucia López Inflection points of real and tropical plane curves, J. Singul., Volume 4 (2012), pp. 74-103 | DOI | MR | Zbl

[5] Brusotti, Luigi Sulla “piccola variazone” di una curva piana algebraica reali, Rom. Acc. L. Rend. (5), Volume 30 (1921) no. 5, pp. 375-379 | Zbl

[6] Catanese, Fabrizio; Trifogli, Cecilia Focal loci of algebraic varieties. I, Commun. Algebra, Volume 28 (2000) no. 12, pp. 6017-6057 (Special issue in honor of Robin Hartshorne) | DOI | MR | Zbl

[7] Coolidge, Julian L. A treatise on algebraic plane curves, Dover Publications, 1959 | MR | Zbl

[8] Di Rocco, Sandra; Eklund, David; Weinstein, Madeleine The bottleneck degree of algebraic varieties, SIAM J. Appl. Algebra Geom., Volume 4 (2020) no. 1, pp. 227-253 | DOI | MR | Zbl

[9] Dias, Fabio Scalco; Tari, Farid On vertices and inflections of plane curves, J. Singul., Volume 17 (2018), pp. 70-80 | DOI | MR | Zbl

[10] Draisma, Jan; Horobeţ, Emil; Ottaviani, Giorgio; Sturmfels, Bernd; Thomas, Rekha R. The Euclidean distance degree of an algebraic variety, Found. Comput. Math., Volume 16 (2016) no. 1, pp. 99-149 | DOI | MR | Zbl

[11] Fuchs, Dmitry Evolutes and involutes of spatial curves, Am. Math. Mon., Volume 120 (2013) no. 3, pp. 217-231 | DOI | MR | Zbl

[12] Fukunaga, Tomonori; Takahashi, Masatomo Evolutes of fronts in the Euclidean plane, J. Singul., Volume 10 (2014), pp. 92-107 | DOI | MR | Zbl

[13] Grayson, Daniel R.; Stillman, Michael E. Macaulay2, a software system for research in algebraic geometry, 2021

[14] Gudkov, Dmitriĭ A. Bifurcation of simple double points and cusps of real, plane, algebraic curves, Dokl. Akad. Nauk SSSR, Volume 142 (1962), pp. 990-993 | MR | Zbl

[15] Gudkov, Dmitriĭ A. The topology of real projective algebraic varieties, Usp. Mat. Nauk, Volume 29 (1974) no. 4(178), pp. 3-79 (Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ. II.) | DOI | MR | Zbl

[16] Hilton, Harold Plane algebraic curves, Oxford University Press, 1932

[17] Huygens, Christiaan Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae, Apud F. Muguet, 1673 (https://archive.org/details/gpl_3536690/mode/2up)

[18] Huygens, Christiaan; Blackwell, Richard J. Christiaan Huygens’ the pendulum clock, or, Geometrical demonstrations concerning the motion of pendula as applied to clocks, Iowa State University Press, 1986 | MR

[19] Josse, Alfrederic; Pène, Françoise Normal class and normal lines of algebraic hypersurfaces (2014) (no. hal-00953669v4, https://hal.science/hal-00953669v4)

[20] Josse, Alfrederic; Pène, Françoise On the degree of caustics by reflection, Commun. Algebra, Volume 42 (2014) no. 6, pp. 2442-2475 | DOI | MR | Zbl

[21] Klein, Felix Eine neue Relation zwischen den Singularitäten einer algebraischen Curve, Math. Ann., Volume 10 (1876) no. 2, pp. 199-209 | DOI | MR

[22] Lang, Lionel; Shapiro, Boris; Shustin, Eugenii On the number of intersection points of the contour of an amoeba with a line, Indiana Univ. Math. J., Volume 70 (2021) no. 4, pp. 1335-1353 | DOI | MR | Zbl

[23] Maplesoft, a division of Waterloo Maple Inc. Maple, 2019 (https://hadoop.apache.org, https://fr.maplesoft.com/products/Maple/index.aspx)

[24] Piene, Ragni Polar classes of singular varieties, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 2, pp. 247-276 | DOI | Numdam | MR | Zbl

[25] Piene, Ragni Higher order polar and reciprocal polar loci, Facets of algebraic geometry. Vol. II (London Mathematical Society Lecture Note Series), Volume 473, Cambridge University Press (2022), pp. 238-253 | DOI | Zbl

[26] Pushkar, Petr E. Diameters of immersed manifolds and of wave fronts, C. R. Math. Acad. Sci. Paris, Volume 326 (1998) no. 2, pp. 201-205 | DOI | Zbl

[27] Pushkar, Petr E. Generalization of the Chekanov’s theorem. Diameters of immersed manifolds and wave fronts, Tr. Mat. Inst. Steklova, Volume 221 (1998), pp. 289-304 | Zbl

[28] Ronga, Felice Felix Klein’s paper on real flexes vindicated, Singularities symposium, Volume 44, Warsaw: Institute of Mathematics, Polish Academy of Sciences, 1998, pp. 195-210 | Zbl

[29] Salarinoghabi, Mostafa; Tari, Farid Flat and round singularity theory of plane curves, Q. J. Math., Volume 68 (2017) no. 4, pp. 1289-1312 | DOI | MR | Zbl

[30] Salmon, George A treatise on the higher plane curves: intended as a sequel to “A treatise on conic sections”, Chelsea Publishing, 1954 | MR | Zbl

[31] Schuh, Frederik An equation of reality for real and imaginary plane curves with higher singularities, KNAW, Proceedings Amsterdam, Volume 1903–1904 (1904) no. 6, pp. 764-773

[32] Tabachnikov, Serge The four-vertex theorem revisited – two variations on the old theme, Am. Math. Mon., Volume 102 (1995) no. 10, pp. 912-916 | MR | Zbl

[33] Thom, René Sur les variétés d’ordre fini, Global Analysis: Papers in Honor of K. Kodaira (PMS-29), Princeton University Press, 1969, pp. 397-402 | Zbl

[34] Viro, O. Ya. Some integral calculus based on Euler characteristic, Topology and geometry, Rohlin Seminar. 1984-1986 (Lecture Notes in Mathematics), Volume 1346, Springer (1988), pp. 127-138 | DOI | MR | Zbl

[35] Wall, C. T. C. Duality of real projective plane curves: Klein’s equation, Topology, Volume 35 (1996) no. 2, pp. 355-362 | DOI | MR | Zbl

[36] Wikipedia Evolute (https://en.wikipedia.org/wiki/Evolute, Accessed: 20. October 2021)

[37] Yates, Robert C. A Handbook on Curves and Their Properties, J. W. Edwards, Ann Arbor, Michigan, 1947 | MR

[38] Yoder, Joella G. Unrolling time. Christiaan Huygens and the mathematization of nature, Cambridge University Press, 1988 | DOI | MR

Cité par Sources :