[Retour de la développée plane]
Nous considérons les développées des courbes algébriques réelles planes et discutons certaines de leurs propriétés dans le cas complexe et réel. En particulier, pour un degré donné , nous fournissons des bornes inférieures pour les quatre invariants numériques suivants :
En particulier, pour un degré donné , nous fournissons des bornes inférieures pour les quatre invariants numériques suivants :
- (1) le nombre maximal de fois qu’une droite réelle peut intersecter la développée d’une courbe algébrique réelle de degré ;
- (2) le nombre maximal de points de rebroussement réels pouvant survenir sur la développée d’une courbe algébrique réelle de degré ;
- (3) le nombre maximal de points double ordinaires pouvant survenir sur la courbe duale à la développée d’une courbe algébrique réelle de degré ;
- (4) le nombre maximal de points double ordinaires pouvant survenir sur la développée d’une courbe algébrique réelle de degré .
We consider the evolutes of plane real-algebraic curves and discuss some of their complex and real-algebraic properties. In particular, for a given degree , we provide lower bounds for the following four numerical invariants:
- (1) the maximal number of times a real line can intersect the evolute of a real-algebraic curve of degree ;
- (2) the maximal number of real cusps which can occur on the evolute of a real-algebraic curve of degree ;
- (3) the maximal number of crunodes which can occur on the dual curve to the evolute of a real-algebraic curve of degree ;
- (4) the maximal number of crunodes which can occur on the evolute of a real-algebraic curve of degree .
Révisé le :
Accepté le :
Première publication :
Keywords: evolute, plane real algebraic curve
Mots-clés : développée, courbe algébrique réelle plane
Piene, Ragni 1 ; Riener, Cordian 2 ; Shapiro, Boris 3
@unpublished{AIF_0__0_0_A133_0, author = {Piene, Ragni and Riener, Cordian and Shapiro, Boris}, title = {Return of the plane evolute}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3703}, language = {en}, note = {Online first}, }
Piene, Ragni; Riener, Cordian; Shapiro, Boris. Return of the plane evolute. Annales de l'Institut Fourier, Online first, 67 p.
[1] Huygens and Barrow, Newton and Hooke. Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals, Birkhäuser, 1990, 118 pages (translated from the Russian by Eric J. F. Primrose) | Zbl
[2] Topological invariants of plane curves and caustics, University Lecture Series, 5, American Mathematical Society, 1994 (Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, New Jersey) | MR | Zbl
[3] Curves of constant diameter and inscribed polygons, Elem. Math., Volume 64 (2009) no. 3, pp. 102-108 | DOI | MR | Zbl
[4] Inflection points of real and tropical plane curves, J. Singul., Volume 4 (2012), pp. 74-103 | DOI | MR | Zbl
[5] Sulla “piccola variazone” di una curva piana algebraica reali, Rom. Acc. L. Rend. (5), Volume 30 (1921) no. 5, pp. 375-379 | Zbl
[6] Focal loci of algebraic varieties. I, Commun. Algebra, Volume 28 (2000) no. 12, pp. 6017-6057 (Special issue in honor of Robin Hartshorne) | DOI | MR | Zbl
[7] A treatise on algebraic plane curves, Dover Publications, 1959 | MR | Zbl
[8] The bottleneck degree of algebraic varieties, SIAM J. Appl. Algebra Geom., Volume 4 (2020) no. 1, pp. 227-253 | DOI | MR | Zbl
[9] On vertices and inflections of plane curves, J. Singul., Volume 17 (2018), pp. 70-80 | DOI | MR | Zbl
[10] The Euclidean distance degree of an algebraic variety, Found. Comput. Math., Volume 16 (2016) no. 1, pp. 99-149 | DOI | MR | Zbl
[11] Evolutes and involutes of spatial curves, Am. Math. Mon., Volume 120 (2013) no. 3, pp. 217-231 | DOI | MR | Zbl
[12] Evolutes of fronts in the Euclidean plane, J. Singul., Volume 10 (2014), pp. 92-107 | DOI | MR | Zbl
[13] Macaulay2, a software system for research in algebraic geometry, 2021
[14] Bifurcation of simple double points and cusps of real, plane, algebraic curves, Dokl. Akad. Nauk SSSR, Volume 142 (1962), pp. 990-993 | MR | Zbl
[15] The topology of real projective algebraic varieties, Usp. Mat. Nauk, Volume 29 (1974) no. 4(178), pp. 3-79 (Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ. II.) | DOI | MR | Zbl
[16] Plane algebraic curves, Oxford University Press, 1932
[17] Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae, Apud F. Muguet, 1673 (https://archive.org/details/gpl_3536690/mode/2up)
[18] Christiaan Huygens’ the pendulum clock, or, Geometrical demonstrations concerning the motion of pendula as applied to clocks, Iowa State University Press, 1986 | MR
[19] Normal class and normal lines of algebraic hypersurfaces (2014) (no. hal-00953669v4, https://hal.science/hal-00953669v4)
[20] On the degree of caustics by reflection, Commun. Algebra, Volume 42 (2014) no. 6, pp. 2442-2475 | DOI | MR | Zbl
[21] Eine neue Relation zwischen den Singularitäten einer algebraischen Curve, Math. Ann., Volume 10 (1876) no. 2, pp. 199-209 | DOI | MR
[22] On the number of intersection points of the contour of an amoeba with a line, Indiana Univ. Math. J., Volume 70 (2021) no. 4, pp. 1335-1353 | DOI | MR | Zbl
[23] Maple, 2019 (https://hadoop.apache.org, https://fr.maplesoft.com/products/Maple/index.aspx)
[24] Polar classes of singular varieties, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 2, pp. 247-276 | DOI | Numdam | MR | Zbl
[25] Higher order polar and reciprocal polar loci, Facets of algebraic geometry. Vol. II (London Mathematical Society Lecture Note Series), Volume 473, Cambridge University Press (2022), pp. 238-253 | DOI | Zbl
[26] Diameters of immersed manifolds and of wave fronts, C. R. Math. Acad. Sci. Paris, Volume 326 (1998) no. 2, pp. 201-205 | DOI | Zbl
[27] Generalization of the Chekanov’s theorem. Diameters of immersed manifolds and wave fronts, Tr. Mat. Inst. Steklova, Volume 221 (1998), pp. 289-304 | Zbl
[28] Felix Klein’s paper on real flexes vindicated, Singularities symposium, Volume 44, Warsaw: Institute of Mathematics, Polish Academy of Sciences, 1998, pp. 195-210 | Zbl
[29] Flat and round singularity theory of plane curves, Q. J. Math., Volume 68 (2017) no. 4, pp. 1289-1312 | DOI | MR | Zbl
[30] A treatise on the higher plane curves: intended as a sequel to “A treatise on conic sections”, Chelsea Publishing, 1954 | MR | Zbl
[31] An equation of reality for real and imaginary plane curves with higher singularities, KNAW, Proceedings Amsterdam, Volume 1903–1904 (1904) no. 6, pp. 764-773
[32] The four-vertex theorem revisited – two variations on the old theme, Am. Math. Mon., Volume 102 (1995) no. 10, pp. 912-916 | MR | Zbl
[33] Sur les variétés d’ordre fini, Global Analysis: Papers in Honor of K. Kodaira (PMS-29), Princeton University Press, 1969, pp. 397-402 | Zbl
[34] Some integral calculus based on Euler characteristic, Topology and geometry, Rohlin Seminar. 1984-1986 (Lecture Notes in Mathematics), Volume 1346, Springer (1988), pp. 127-138 | DOI | MR | Zbl
[35] Duality of real projective plane curves: Klein’s equation, Topology, Volume 35 (1996) no. 2, pp. 355-362 | DOI | MR | Zbl
[36] Evolute (https://en.wikipedia.org/wiki/Evolute, Accessed: 20. October 2021)
[37] A Handbook on Curves and Their Properties, J. W. Edwards, Ann Arbor, Michigan, 1947 | MR
[38] Unrolling time. Christiaan Huygens and the mathematization of nature, Cambridge University Press, 1988 | DOI | MR
Cité par Sources :