[Indépendence algébrique et équations aux différences sur les corps de fonctions elliptiques]
Pour un reseau dans le plan complexe, soit le corps des fonctions -elliptiques. Pour deux entiers (respectivement ), premiers entre eux, considérons les endomorphismes (resp. ) de donnés par multiplication par (resp. ) sur la courbe elliptique . Nous prouvons que si (resp. ) sont des séries de Laurent complexes qui satisfont les équations aux différences linéaires sur par rapport à (resp. ), alors il y a une dichotomie. Soit, pour un sous-réseau de l’un de ou appartient à l’anneau où ) est la fonction zeta de Weierstrass, ou et sont algébriquement indépendents sur C’est un analogue elliptique d’un théorème récent d’Adamczewski, Dreyfus, Hardouin et Wibmer (sur le corps des fonctions rationelles).
For a lattice in the complex plane, let be the field of -elliptic functions. For two relatively prime integers (respectively ) greater than 1, consider the endomorphisms (resp. of given by multiplication by (resp. ) on the elliptic curve . We prove that if (resp. ) are complex Laurent power series that satisfy linear difference equations over with respect to (resp. ) then there is a dichotomy. Either, for some sublattice of one of or belongs to the ring , where is the Weierstrass zeta function, or and are algebraically independent over This is an elliptic analogue of a recent theorem of Adamczewski, Dreyfus, Hardouin and Wibmer (over the field of rational functions).
Révisé le :
Accepté le :
Première publication :
Keywords: Difference equations, elliptic functions, algebraic independence
Mots-clés : équations aux différences, fonctions elliptiques, indépendence algébrique
de Shalit, Ehud 1
@unpublished{AIF_0__0_0_A129_0, author = {de Shalit, Ehud}, title = {Algebraic independence and difference equations over elliptic function fields}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3694}, language = {en}, note = {Online first}, }
de Shalit, Ehud. Algebraic independence and difference equations over elliptic function fields. Annales de l'Institut Fourier, Online first, 46 p.
[1] A problem about Mahler functions, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 17 (2017), pp. 1301-1355 | DOI | MR | Zbl
[2] Hypertranscendence and linear difference equations, J. Am. Math. Soc., Volume 34 (2021), pp. 475-503 | DOI | MR | Zbl
[3] Algebraic independence and linear difference equations, J. Eur. Math. Soc. (2022) | DOI
[4] Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3), Volume 7 (1957), pp. 414-452 | DOI | MR | Zbl
[5] Sur les équations fonctionelles -adiques aux -différences, Collect. Math., Volume 43 (1992), pp. 125-140 | MR | Zbl
[6] Difference Galois theory of linear differential equations, Adv. Math., Volume 260 (2014), pp. 1-58 | DOI | MR | Zbl
[7] Difference algebraic relations among solutions of linear differential equations, J. Inst. Math. Jussieu, Volume 16 (2017) no. 1, pp. 59-119 | DOI | MR | Zbl
[8] Functional relations for solutions of -differential equations, Math. Z., Volume 298 (2021) no. 3-4, pp. 1751-1791 | DOI | MR | Zbl
[9] Galois groups of difference equations of order two on elliptic curves, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 003, 23 pages | DOI | MR | Zbl
[10] Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377 | DOI | Zbl
[11] -Galois theory of linear difference equations, Int. Math. Res. Not., Volume 12 (2015), pp. 3962-4018 | DOI | MR | Zbl
[12] Remarks on automata, functional equations and transcendence, Séminaire de Théorie des Nombres de Bordeaux, Volume 1986-1987 (1986), 27
[13] Galois theory of difference equations, Lecture Notes in Mathematics, 1666, Springer, 1997 | DOI | MR | Zbl
[14] Consistent systems of linear differential and difference equations, J. Eur. Math. Soc., Volume 21 (2019), pp. 2751-2792 | DOI | MR | Zbl
[15] Cohomologie Galoisienne. Cours au College de France, 1962-1963, Lecture Notes in Mathematics, 5, Springer, 1973 | MR | Zbl
[16] Criteria for periodicity and an application to elliptic functions, Can. Math. Bull., Volume 64 (2021), pp. 530-540 | DOI | MR | Zbl
[17] Elliptic -difference modules, Algebra Number Theory, Volume 15 (2021), pp. 1303-1342 | DOI | MR | Zbl
[18] On the structure of certain -difference modules, Enseign. Math. (2), Volume 68 (2022) no. 3-4, pp. 341-377 | DOI | MR | Zbl
Cité par Sources :