Algebraic independence and difference equations over elliptic function fields
[Indépendence algébrique et équations aux différences sur les corps de fonctions elliptiques]
Annales de l'Institut Fourier, Online first, 46 p.

Pour un reseau Λ dans le plan complexe, soit K Λ le corps des fonctions Λ-elliptiques. Pour deux entiers p (respectivement q), premiers entre eux, considérons les endomorphismes ψ (resp. ϕ) de K Λ donnés par multiplication par p (resp. q) sur la courbe elliptique /Λ. Nous prouvons que si f (resp. g) sont des séries de Laurent complexes qui satisfont les équations aux différences linéaires sur K Λ par rapport à ϕ (resp. ψ), alors il y a une dichotomie. Soit, pour un sous-réseau Λ de Λ, l’un de f ou g appartient à l’anneau K Λ [z,z -1 ,ζ(z,Λ )],ζ(z,Λ ) est la fonction zeta de Weierstrass, ou f et g sont algébriquement indépendents sur K Λ . C’est un analogue elliptique d’un théorème récent d’Adamczewski, Dreyfus, Hardouin et Wibmer (sur le corps des fonctions rationelles).

For a lattice Λ in the complex plane, let K Λ be the field of Λ-elliptic functions. For two relatively prime integers p (respectively q) greater than 1, consider the endomorphisms ψ (resp. ϕ) of K Λ given by multiplication by p (resp. q) on the elliptic curve /Λ. We prove that if f (resp. g) are complex Laurent power series that satisfy linear difference equations over K Λ with respect to ϕ (resp. ψ) then there is a dichotomy. Either, for some sublattice Λ of Λ, one of f or g belongs to the ring K Λ [z,z -1 ,ζ(z,Λ )], where ζ(z,Λ ) is the Weierstrass zeta function, or f and g are algebraically independent over K Λ . This is an elliptic analogue of a recent theorem of Adamczewski, Dreyfus, Hardouin and Wibmer (over the field of rational functions).

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3694
Classification : 12H10, 14H52, 39A10
Keywords: Difference equations, elliptic functions, algebraic independence
Mots-clés : équations aux différences, fonctions elliptiques, indépendence algébrique

de Shalit, Ehud 1

1 Einstein Institute of Mathematics, The Hebrew University of Jerusalem (Israel)
@unpublished{AIF_0__0_0_A129_0,
     author = {de Shalit, Ehud},
     title = {Algebraic independence and difference equations over elliptic function fields},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3694},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - de Shalit, Ehud
TI  - Algebraic independence and difference equations over elliptic function fields
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3694
LA  - en
ID  - AIF_0__0_0_A129_0
ER  - 
%0 Unpublished Work
%A de Shalit, Ehud
%T Algebraic independence and difference equations over elliptic function fields
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3694
%G en
%F AIF_0__0_0_A129_0
de Shalit, Ehud. Algebraic independence and difference equations over elliptic function fields. Annales de l'Institut Fourier, Online first, 46 p.

[1] Adamczewski, Boris; Bell, Jason P. A problem about Mahler functions, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 17 (2017), pp. 1301-1355 | DOI | MR | Zbl

[2] Adamczewski, Boris; Dreyfus, Thomas; Hardouin, Charlotte Hypertranscendence and linear difference equations, J. Am. Math. Soc., Volume 34 (2021), pp. 475-503 | DOI | MR | Zbl

[3] Adamczewski, Boris; Dreyfus, Thomas; Hardouin, Charlotte; Wibmer, Michael Algebraic independence and linear difference equations, J. Eur. Math. Soc. (2022) | DOI

[4] Atiyah, Michael F. Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3), Volume 7 (1957), pp. 414-452 | DOI | MR | Zbl

[5] Bézivin, Jean-Paul; Boutabaa, Abdelbaki Sur les équations fonctionelles p-adiques aux q-différences, Collect. Math., Volume 43 (1992), pp. 125-140 | MR | Zbl

[6] Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael Difference Galois theory of linear differential equations, Adv. Math., Volume 260 (2014), pp. 1-58 | DOI | MR | Zbl

[7] Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael Difference algebraic relations among solutions of linear differential equations, J. Inst. Math. Jussieu, Volume 16 (2017) no. 1, pp. 59-119 | DOI | MR | Zbl

[8] Dreyfus, Thomas; Hardouin, Charlotte; Roques, Julien Functional relations for solutions of q-differential equations, Math. Z., Volume 298 (2021) no. 3-4, pp. 1751-1791 | DOI | MR | Zbl

[9] Dreyfus, Thomas; Roques, Julien Galois groups of difference equations of order two on elliptic curves, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 003, 23 pages | DOI | MR | Zbl

[10] Hardouin, Charlotte; Singer, Michael F. Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377 | DOI | Zbl

[11] Ovchinnikov, Alexey; Wibmer, Michael σ-Galois theory of linear difference equations, Int. Math. Res. Not., Volume 12 (2015), pp. 3962-4018 | DOI | MR | Zbl

[12] van der Poorten, A. J. Remarks on automata, functional equations and transcendence, Séminaire de Théorie des Nombres de Bordeaux, Volume 1986-1987 (1986), 27

[13] van der Put, Marius; Singer, Michael F. Galois theory of difference equations, Lecture Notes in Mathematics, 1666, Springer, 1997 | DOI | MR | Zbl

[14] Schäfke, Reinhard; Singer, Michael F. Consistent systems of linear differential and difference equations, J. Eur. Math. Soc., Volume 21 (2019), pp. 2751-2792 | DOI | MR | Zbl

[15] Serre, Jean-Pierre Cohomologie Galoisienne. Cours au College de France, 1962-1963, Lecture Notes in Mathematics, 5, Springer, 1973 | MR | Zbl

[16] de Shalit, Ehud Criteria for periodicity and an application to elliptic functions, Can. Math. Bull., Volume 64 (2021), pp. 530-540 | DOI | MR | Zbl

[17] de Shalit, Ehud Elliptic (p,q)-difference modules, Algebra Number Theory, Volume 15 (2021), pp. 1303-1342 | DOI | MR | Zbl

[18] de Shalit, Ehud; Gutiérrez, José On the structure of certain Γ-difference modules, Enseign. Math. (2), Volume 68 (2022) no. 3-4, pp. 341-377 | DOI | MR | Zbl

Cité par Sources :