Algebraic independence and difference equations over elliptic function fields
[Indépendence algébrique et équations aux différences sur les corps de fonctions elliptiques]
Annales de l'Institut Fourier, Tome 75 (2025) no. 4, pp. 1509-1554.

For a lattice $\Lambda $ in the complex plane, let $K_{\Lambda }$ be the field of $\Lambda $-elliptic functions. For two relatively prime integers $p$ (respectively $q$) greater than 1, consider the endomorphisms $\psi $ (resp. $\phi )$ of $K_{\Lambda }$ given by multiplication by $p$ (resp. $q$) on the elliptic curve $\mathbb{C}/\Lambda $. We prove that if $f$ (resp. $g$) are complex Laurent power series that satisfy linear difference equations over $K_{\Lambda }$ with respect to $\phi $ (resp. $\psi $) then there is a dichotomy. Either, for some sublattice $\Lambda ^{\prime }$ of $\Lambda ,$ one of $f$ or $g$ belongs to the ring $K_{\Lambda ^{\prime }}[z,z^{-1},\zeta (z,\Lambda ^{\prime })]$, where $\zeta (z,\Lambda ^{\prime })$ is the Weierstrass zeta function, or $f$ and $g$ are algebraically independent over $K_{\Lambda }.$ This is an elliptic analogue of a recent theorem of Adamczewski, Dreyfus, Hardouin and Wibmer (over the field of rational functions).

Pour un reseau $\Lambda $ dans le plan complexe, soit $K_{\Lambda }$ le corps des fonctions $\Lambda $-elliptiques. Pour deux entiers $p$ (respectivement $q$), premiers entre eux, considérons les endomorphismes $\psi $ (resp. $\phi $) de $K_{\Lambda }$ donnés par multiplication par $p$ (resp. $q$) sur la courbe elliptique $\mathbb{C}/\Lambda $. Nous prouvons que si $f$ (resp. $g$) sont des séries de Laurent complexes qui satisfont les équations aux différences linéaires sur $K_{\Lambda }$ par rapport à $\phi $ (resp. $\psi $), alors il y a une dichotomie. Soit, pour un sous-réseau $\Lambda ^{\prime }$ de $\Lambda ,$ l’un de $f$ ou $g$ appartient à l’anneau $K_{\Lambda ^{\prime }}[z,z^{-1},\zeta (z,\Lambda ^{\prime })],$$\zeta (z,\Lambda ^{\prime }$) est la fonction zeta de Weierstrass, ou $f$ et $g$ sont algébriquement indépendents sur $K_{\Lambda }.$ C’est un analogue elliptique d’un théorème récent d’Adamczewski, Dreyfus, Hardouin et Wibmer (sur le corps des fonctions rationelles).

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3694
Classification : 12H10, 14H52, 39A10
Keywords: Difference equations, elliptic functions, algebraic independence
Mots-clés : équations aux différences, fonctions elliptiques, indépendence algébrique

de Shalit, Ehud 1

1 Einstein Institute of Mathematics, The Hebrew University of Jerusalem (Israel)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2025__75_4_1509_0,
     author = {de Shalit, Ehud},
     title = {Algebraic independence and difference equations over elliptic function fields},
     journal = {Annales de l'Institut Fourier},
     pages = {1509--1554},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {75},
     number = {4},
     year = {2025},
     doi = {10.5802/aif.3694},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3694/}
}
TY  - JOUR
AU  - de Shalit, Ehud
TI  - Algebraic independence and difference equations over elliptic function fields
JO  - Annales de l'Institut Fourier
PY  - 2025
SP  - 1509
EP  - 1554
VL  - 75
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3694/
DO  - 10.5802/aif.3694
LA  - en
ID  - AIF_2025__75_4_1509_0
ER  - 
%0 Journal Article
%A de Shalit, Ehud
%T Algebraic independence and difference equations over elliptic function fields
%J Annales de l'Institut Fourier
%D 2025
%P 1509-1554
%V 75
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3694/
%R 10.5802/aif.3694
%G en
%F AIF_2025__75_4_1509_0
de Shalit, Ehud. Algebraic independence and difference equations over elliptic function fields. Annales de l'Institut Fourier, Tome 75 (2025) no. 4, pp. 1509-1554. doi : 10.5802/aif.3694. https://aif.centre-mersenne.org/articles/10.5802/aif.3694/

[1] Adamczewski, Boris; Bell, Jason P. A problem about Mahler functions, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 17 (2017), pp. 1301-1355 | DOI | MR | Zbl

[2] Adamczewski, Boris; Dreyfus, Thomas; Hardouin, Charlotte Hypertranscendence and linear difference equations, J. Am. Math. Soc., Volume 34 (2021), pp. 475-503 | DOI | MR | Zbl

[3] Adamczewski, Boris; Dreyfus, Thomas; Hardouin, Charlotte; Wibmer, Michael Algebraic independence and linear difference equations, J. Eur. Math. Soc. (2022) | DOI | MR | Zbl

[4] Atiyah, Michael F. Vector bundles over an elliptic curve, Proc. Lond. Math. Soc. (3), Volume 7 (1957), pp. 414-452 | DOI | MR | Zbl

[5] Bézivin, Jean-Paul; Boutabaa, Abdelbaki Sur les équations fonctionelles p-adiques aux q-différences, Collect. Math., Volume 43 (1992), pp. 125-140 | MR | Zbl

[6] Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael Difference Galois theory of linear differential equations, Adv. Math., Volume 260 (2014), pp. 1-58 | DOI | MR | Zbl

[7] Di Vizio, Lucia; Hardouin, Charlotte; Wibmer, Michael Difference algebraic relations among solutions of linear differential equations, J. Inst. Math. Jussieu, Volume 16 (2017) no. 1, pp. 59-119 | DOI | MR | Zbl

[8] Dreyfus, Thomas; Hardouin, Charlotte; Roques, Julien Functional relations for solutions of q-differential equations, Math. Z., Volume 298 (2021) no. 3-4, pp. 1751-1791 | DOI | MR | Zbl

[9] Dreyfus, Thomas; Roques, Julien Galois groups of difference equations of order two on elliptic curves, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 11 (2015), 003, 23 pages | DOI | MR | Zbl

[10] Hardouin, Charlotte; Singer, Michael F. Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008) no. 2, pp. 333-377 | DOI | Zbl

[11] Ovchinnikov, Alexey; Wibmer, Michael σ-Galois theory of linear difference equations, Int. Math. Res. Not., Volume 12 (2015), pp. 3962-4018 | DOI | MR | Zbl

[12] van der Poorten, A. J. Remarks on automata, functional equations and transcendence, Séminaire de Théorie des Nombres de Bordeaux, Volume 1986-1987 (1986), 27, 11 pages

[13] van der Put, Marius; Singer, Michael F. Galois theory of difference equations, Lecture Notes in Mathematics, 1666, Springer, 1997 | DOI | MR | Zbl

[14] Schäfke, Reinhard; Singer, Michael F. Consistent systems of linear differential and difference equations, J. Eur. Math. Soc., Volume 21 (2019), pp. 2751-2792 | DOI | MR | Zbl

[15] Serre, Jean-Pierre Cohomologie Galoisienne. Cours au College de France, 1962-1963, Lecture Notes in Mathematics, 5, Springer, 1973 | MR | Zbl

[16] de Shalit, Ehud Criteria for periodicity and an application to elliptic functions, Can. Math. Bull., Volume 64 (2021), pp. 530-540 | DOI | MR | Zbl

[17] de Shalit, Ehud Elliptic (p,q)-difference modules, Algebra Number Theory, Volume 15 (2021), pp. 1303-1342 | DOI | MR | Zbl

[18] de Shalit, Ehud; Gutiérrez, José On the structure of certain Γ-difference modules, Enseign. Math. (2), Volume 68 (2022) no. 3-4, pp. 341-377 | DOI | MR | Zbl

Cité par Sources :