[Le formalisme de la matrice R pour les algèbres enveloppantes quantifiées]
Soit le groupe quantique de Drinfeld–Jimbo associé à une algèbre de Lie simple . Nous appliquons une modification du formalisme de Faddeev–Reshetikhin–Takhtajan pour les groupes quantiques à l’évaluation de la matrice universelle de sur n’importe quelle de ses représentations de dimension finie. Cela produit une algèbre enveloppante quantifiée dont la définition est donnée en termes de deux matrices génératrices satisfaisant des variantes des relations . Nous prouvons que est isomorphe au produit tensoriel du double quantique de la sous-algèbre de Borel et d’une algèbre polynomiale quantifiée associée à l’espace des -invariants de , où est la limite semi-classique de la représentation de dimension finie choisi. Grâce à cette description, nous caractérisons et le double quantique de comme des quotients de Hopf de et comme des sous-algèbres de points fixes par rapport à certains automorphismes naturels. Comme corollaire additionnel, nous déduisons que est quasi-triangulaire précisément lorsque est sans multiplicités.
Let denote the Drinfeld–Jimbo quantum group associated to a simple Lie algebra . We apply a modification of the -matrix construction for quantum groups to the evaluation of the universal -matrix of on any of its finite-dimensional representations. This produces a quantized enveloping algebra whose definition is given in terms of two generating matrices satisfying variants of the well-known relations. We prove that is isomorphic to the tensor product of the quantum double of the Borel subalgebra and a quantized polynomial algebra encoded by the space of -invariants associated to the semiclassical limit of the underlying finite-dimensional representation. Using this description, we characterize and the quantum double of as Hopf quotients of and as fixed-point subalgebras with respect to certain natural automorphisms. As an additional corollary, we deduce that is quasitriangular precisely when is multiplicity free.
Révisé le :
Accepté le :
Première publication :
Keywords: Quantum groups, R-matrices, Yang–Baxter equation, Lie bialgebras
Mots-clés : Groupes quantiques, matrices R, équation de Yang–Baxter, bi-algèbres de Lie
Gautam, Sachin 1 ; Rupert, Matthew 2 ; Wendlandt, Curtis 2
@unpublished{AIF_0__0_0_A158_0, author = {Gautam, Sachin and Rupert, Matthew and Wendlandt, Curtis}, title = {The $R$-matrix formalism for quantized enveloping algebras}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3688}, language = {en}, note = {Online first}, }
TY - UNPB AU - Gautam, Sachin AU - Rupert, Matthew AU - Wendlandt, Curtis TI - The $R$-matrix formalism for quantized enveloping algebras JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3688 LA - en ID - AIF_0__0_0_A158_0 ER -
Gautam, Sachin; Rupert, Matthew; Wendlandt, Curtis. The $R$-matrix formalism for quantized enveloping algebras. Annales de l'Institut Fourier, Online first, 59 p.
[1] A 2-categorical extension of Etingof–Kazhdan quantisation, Sel. Math., New Ser., Volume 24 (2018) no. 4, pp. 3529-3617 | DOI | MR | Zbl
[2] On the -matrix realization of Yangians and their representations, Ann. Henri Poincaré, Volume 7 (2006) no. 7-8, pp. 1269-1325 | DOI | MR | Zbl
[3] A guide to quantum groups, Cambridge University Press, 1994, xvi+651 pages | MR | Zbl
[4] Isomorphism of two realizations of quantum affine algebra , Commun. Math. Phys., Volume 156 (1993) no. 2, pp. 277-300 | DOI | MR | Zbl
[5] Hopf algebras and the quantum Yang–Baxter equation, Sov. Math., Dokl., Volume 32 (1985) no. 1, pp. 254-258 | Zbl
[6] Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), American Mathematical Society (1987), pp. 798-820 | MR | Zbl
[7] Almost cocommutative Hopf algebras, Algebra Anal., Volume 1 (1989) no. 2, pp. 30-46 | MR
[8] Quantization of Lie bialgebras. I, Sel. Math., New Ser., Volume 2 (1996) no. 1, pp. 1-41 | DOI | MR | Zbl
[9] Lectures on quantum groups, Lectures in Mathematical Physics, International Press, 2002, xii+242 pages | MR | Zbl
[10] Quantum completely integrable models in field theory, Mathematical physics reviews, Vol. 1 (Soviet Scientific Reviews. Section C), Volume 1, Harwood Academic, 1980, pp. 107-155 | MR | Zbl
[11] Quantization of Lie Groups and Lie Algebras, Leningr. Math. J., Volume 1 (1990) no. 1, pp. 193-225 | MR | Zbl
[12] Quantum inverse problem method. I, Teor. Mat. Fiz., Volume 40 (1979) no. 2, pp. 194-220 | MR | Zbl
[13] The quantum method for the inverse problem and the Heisenberg model, Usp. Mat. Nauk, Volume 34 (1979) no. 5(209), p. 13-63, 256 | MR
[14] Trivial central extensions of Lie bialgebras, J. Algebra, Volume 390 (2013), pp. 56-76 | DOI | MR | Zbl
[15] Shifted quantum affine algebras: integral forms in type , Arnold Math. J., Volume 5 (2019) no. 2-3, pp. 197-283 | DOI | MR | Zbl
[16] The quantum duality principle, Ann. Inst. Fourier, Volume 52 (2002) no. 3, pp. 809-834 | DOI | Numdam | MR | Zbl
[17] On the deformation of rings and algebras, Ann. Math. (2), Volume 79 (1964), pp. 59-103 | DOI | MR | Zbl
[18] Representations of twisted -Yangians, Sel. Math., New Ser., Volume 16 (2010) no. 3, pp. 439-499 | DOI | MR | Zbl
[19] R-matrix presentation of orthogonal and symplectic quantum loop algebras and their representations (2022) (in preparation)
[20] operators and Drinfeld’s generators, J. Math. Phys., Volume 39 (1998) no. 3, pp. 1623-1636 | DOI | MR | Zbl
[21] A -difference analogue of and the Yang–Baxter equation, Lett. Math. Phys., Volume 10 (1985) no. 1, pp. 63-69 | DOI | MR | Zbl
[22] A -analogue of , Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys., Volume 11 (1986) no. 3, pp. 247-252 | DOI | MR | Zbl
[23] Isomorphism between the -matrix and Drinfeld presentations of quantum affine algebra: type , J. Math. Phys., Volume 61 (2020) no. 3, 031701, 41 pages | DOI | MR | Zbl
[24] Isomorphism between the -matrix and Drinfeld presentations of quantum affine algebra: types and , SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 16 (2020), 043, 49 pages | DOI | MR | Zbl
[25] Representations of quantum affine algebras in their -matrix realization, SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 16 (2020), 145, 25 pages | DOI | MR | Zbl
[26] Quantum groups, Graduate Texts in Mathematics, 155, Springer, 1995, xii+531 pages | DOI | MR | Zbl
[27] Biquantization of Lie bialgebras, Pac. J. Math., Volume 195 (2000) no. 2, pp. 297-369 | DOI | MR | Zbl
[28] -Weyl group and a multiplicative formula for universal -matrices, Commun. Math. Phys., Volume 134 (1990) no. 2, pp. 421-431 | DOI | MR | Zbl
[29] Quantum groups and their representations, Texts and Monographs in Physics, Springer, 1997, xx+552 pages | DOI | MR | Zbl
[30] Quantum spectral transform method. Recent developments, Integrable quantum field theories (Tvärminne, 1981) (Lecture Notes in Physics), Volume 151, Springer (1982), pp. 61-119 | DOI | MR | Zbl
[31] Some applications of the quantum Weyl groups, J. Geom. Phys., Volume 7 (1990) no. 2, pp. 241-254 | DOI | MR | Zbl
[32] More examples of bicrossproduct and double cross product Hopf algebras, Isr. J. Math., Volume 72 (1990) no. 1-2, pp. 133-148 | DOI | MR | Zbl
[33] Quantum group duality in vertex models and other results in the theory of quasitriangular Hopf algebras, Differential geometric methods in theoretical physics (Davis, CA, 1988) (NATO ASI Series. Series B. Physics), Volume 245, Plenum Press, 1990, pp. 373-385 | DOI | MR | Zbl
[34] Quasitriangular Hopf algebras and Yang–Baxter equations, Int. J. Mod. Phys. A, Volume 5 (1990) no. 1, pp. 1-91 | DOI | MR | Zbl
[35] Foundations of quantum group theory, Cambridge University Press, 1995, x+607 pages | DOI | MR | Zbl
[36] Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143, American Mathematical Society, 2007, xviii+400 pages | DOI | MR | Zbl
[37] Yangians and classical Lie algebras, Russ. Math. Surv., Volume 51 (1996) no. 2, pp. 205-282 | DOI | Zbl
[38] Coideal subalgebras in quantum affine algebras, Rev. Math. Phys., Volume 15 (2003) no. 8, pp. 789-822 | DOI | MR | Zbl
[39] Twisted Yangians and infinite-dimensional classical Lie algebras, Quantum groups. Proceedings of workshops, held in the Euler International Mathematical Institute, Leningrad, USSR, Fall 1990 (Lecture Notes in Mathematics), Volume 1510, Springer, 1992, pp. 104-119 | DOI | MR | Zbl
[40] Central extensions of quantum current groups, Lett. Math. Phys., Volume 19 (1990) no. 2, pp. 133-142 | DOI | MR | Zbl
[41] Représentations irréductibles de dimension finie du -analogue de l’algèbre enveloppante d’une algèbre de Lie simple, C. R. Math. Acad. Sci. Paris, Volume 305 (1987) no. 13, pp. 587-590 | MR | Zbl
[42] An analogue of P.B.W. theorem and the universal -matrix for , Commun. Math. Phys., Volume 124 (1989) no. 2, pp. 307-318 | DOI | MR | Zbl
[43] Quantization of Lie group and algebra of type in the Faddeev–Reshetikhin–Takhtajan approach, J. Math. Phys., Volume 36 (1995) no. 8, pp. 4476-4488 | DOI | MR | Zbl
[44] Finite dimensional representations of quantum groups, Osaka J. Math., Volume 28 (1991) no. 1, pp. 37-53 | MR | Zbl
[45] The -matrix presentation for the Yangian of a simple Lie algebra, Commun. Math. Phys., Volume 363 (2018) no. 1, pp. 289-332 | DOI | MR | Zbl
[46] The restricted quantum double of the Yangian, Can. J. Math. (2024), 72 pages (first view) | DOI
Cité par Sources :