[Défaut du groupe de Galois des -tours de Hilbert et les unités de Minkowski]
Le défaut d’un pro- groupe de type fini est la différence entre son nombre minimal de relations et son nombre minimal de générateurs. Pour un corps de nombres de -extension non ramifiée maximale , posons . Shafarevich (et indépendamment Koch) a montré que
Nous explorons les connexions entre les relations de et la structure galoisienne des unités dans la tour . Si , nous donnons une formule exacte pour en termes du nombre d’unités de Minkowski indépendantes dans la tour. Nous étudions également la profondeur des relations de suivant la filtration de Zassenhaus et montrons que la borne supérieure de Shafarevich–Koch est « presque toujours » optimale. Mais dans l’autre sens, nous donnons les premiers exemples pour lesquels est infini avec et grand, de sorte que la borne supérieure n’est pas optimale.
The deficiency of a finitely presented pro- group is the difference between its minimal numbers of relations and generators. For a number field with maximal unramified -extension , set . Shafarevich (and independently Koch) showed
We explore connections between the relations of and the Galois module structure of the units in the tower . If , we give an exact formula for in terms of the number of independent Minkowski units in the tower. We also study the depth of the relations of in the Zassenhaus filtration and provide evidence that the Shafarevich–Koch upper bound is “almost always” sharp. In the other direction, we give the first examples of infinite with and large, so that the upper bound is not sharp.
Révisé le :
Accepté le :
Première publication :
Keywords: Deficiency, Golod–Shafarevich polynomial, $p$-class field tower, Zassenhaus filtration
Mots-clés : Défaut, polynôme de Golod–Shafarevich, $p$-tour de Hilbert, filtration de Zassenhaus
Hajir, Farshid 1 ; Maire, Christian 2 ; Ramakrishna, Ravi 3
@unpublished{AIF_0__0_0_A127_0, author = {Hajir, Farshid and Maire, Christian and Ramakrishna, Ravi}, title = {Deficiency of $p$-class tower groups and {Minkowski} units}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3677}, language = {en}, note = {Online first}, }
TY - UNPB AU - Hajir, Farshid AU - Maire, Christian AU - Ramakrishna, Ravi TI - Deficiency of $p$-class tower groups and Minkowski units JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3677 LA - en ID - AIF_0__0_0_A127_0 ER -
Hajir, Farshid; Maire, Christian; Ramakrishna, Ravi. Deficiency of $p$-class tower groups and Minkowski units. Annales de l'Institut Fourier, Online first, 48 p.
[1] On some classes of closed pro--groups, Math. USSR, Izv., Volume 9 (1965) no. 4, pp. 663-691 | DOI | Zbl
[2] Imaginary quadratic fields with cyclic , J. Number Theory, Volume 67 (1997) no. 2, pp. 229-245 | DOI | MR
[3] The MAGMA algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[4] The -class tower of , Geometry, algebra, number theory, and their information technology applications (Springer Proceedings in Mathematics & Statistics), Volume 251, Springer (2018), pp. 71-80 | Zbl
[5] Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, 11, John Wiley & Sons, 1988 | MR
[6] Analytic pro- groups, London Mathematical Society Lecture Note Series, 157, Cambridge University Press, 1999 | DOI | MR
[7] Geometric Galois representations, Elliptic curves, modular forms, and Fermat’s last theorem (Series in Number Theory), Volume 1, International Press, 1995, pp. 41-78 | Zbl
[8] On the -rank of the class groups of quadratic number fields, Invent. Math., Volume 167 (2007) no. 3, pp. 455-513 | DOI | MR | Zbl
[9] On the class field tower, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 28 (1964), pp. 261-272 | MR | Zbl
[10] Class Field Theory, From theory to practice, Springer Monographs in Mathematics, Springer, 2005 | Numdam | MR
[11] On the -ramified, -split -class field towers over an extension of degree prime to , J. Number Theory, Volume 129 (2009) no. 11, pp. 2843-2852 | DOI | MR | Zbl
[12] Extensions cycliques -totalement ramifiées, Publ. Math. Besançon, Volume 1998 (1998), 6, 17 pages | Numdam
[13] On the Shafarevich group of restricted ramification extensions of number fields in the tame case, Indiana Univ. Math. J., Volume 70 (2021) no. 6, pp. 2693-2710 | DOI | MR | Zbl
[14] Number Fields with Class Number congruent to mod and Hilbert’s Theorem 94, J. Number Theory, Volume 8 (1976), pp. 271-279 | DOI | MR | Zbl
[15] Galois Theory of -Extensions, Springer Monographs in Mathematics, Springer, 2002 | DOI | MR
[16] Mild pro-p-groups and Galois groups of -extensions of , J. Reine Angew. Math., Volume 596 (2006), pp. 155-182 | MR | Zbl
[17] Mild pro--groups and -extensions of with restricted ramification, J. Algebra, Volume 332 (2011), pp. 136-158 | DOI | MR | Zbl
[18] Groupes analytiques -adiques, Publ. Math., Inst. Hautes Étud. Sci., Volume 26 (1965), pp. 389-603 | MR | Zbl
[19] A predicted distribution for Galois groups of maximal unramified extensions, Invent. Math., Volume 237 (2024), pp. 49-116 | DOI | MR | Zbl
[20] Cohomology of number fields and analytic pro--groups, Mosc. Math. J., Volume 10 (2010) no. 2, pp. 399-414 | DOI | MR | Zbl
[21] On the quotients of the maximal unramified 2-extensions of a number field, Doc. Math., Volume 23 (2018), pp. 1263-1290 | DOI | MR
[22] Tours de corps de classes et estimations de discriminants, Invent. Math., Volume 44 (1978), pp. 65-73 | DOI | MR | Zbl
[23] Notes on étale cohomology of number fields, Ann. Sci. Éc. Norm. Supér., Volume 6 (1973), pp. 521-553 | DOI | Numdam | MR | Zbl
[24] Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2013 (second edition, corrected second printing) | MR
[25] Construction of maximal unramified -extensions with prescribed Galois groups, Invent. Math., Volume 183 (2011) no. 3, pp. 649-680 | DOI | MR | Zbl
[26] PARI/GP version 2.9.4, 2018 (available from http://pari.math.u-bordeaux.fr/)
[27] Profinite Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 40, Springer, 2010 | DOI | MR
[28] On Class Field Towers, Algebraic Number Theory (Cassels, John W. S.; Fröhlich, Albrecht, eds.), Academic Press Inc. (1967), pp. 231-249 | Zbl
[29] Bounded defect in partial Euler characteristics, Bull. Lond. Math. Soc., Volume 28 (1996) no. 5, pp. 463-464 | DOI | MR | Zbl
[30] Rings of integers of type , Doc. Math., Volume 12 (2007), pp. 441-471 | DOI | MR | Zbl
[31] Über Pro--Fundamentalgruppen markierter arithmetischer Kurven, J. Reine Angew. Math., Volume 640 (2010), pp. 203-235 | MR | Zbl
[32] Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. Reine Angew. Math., Volume 166 (1932), pp. 201-203 | DOI | MR | Zbl
[33] Infinite class field towers of quadratic fields, J. Reine Angew. Math., Volume 372 (1986), pp. 209-220 | MR | Zbl
[34] Group Theory, Dover Publications, 1987 | MR
[35] Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer, 1997 | DOI | MR
[36] Algebraic number fields, Proceedings of the International Congress of Mathematicians 1962, Inst. Mittag-Leffler (1963), pp. 163-176 | MR | Zbl
[37] Extensions with prescribed ramification points, Publ. Math., Inst. Hautes Étud. Sci., Volume 18 (1964), pp. 71-95 (in Russian; English translation Amer. Math. Soc. Transl., 59, p. 128-149) | MR | Zbl
[38] On a theorem concerning on infinite dimensionality of an associative algebra, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 29 (1965), pp. 208-214 in Russian; English translation Amer. Mat. Soc. Transl. (2) 82, p. 237-242 | MR | Zbl
[39] On Demuškin groups with involution, Ann. Sci. Éc. Norm. Supér., Volume 22 (1989) no. 4, pp. 555-567 | DOI | Numdam | MR | Zbl
[40] On the Fontaine–Mazur conjecture for CM-fields, Compos. Math., Volume 131 (2002) no. 3, pp. 341-354 | DOI | MR | Zbl
[41] Free quotients of Demushkin groups with operators (2004) (preprint)
Cité par Sources :