[Défaut du groupe de Galois des $p$-tours de Hilbert et les unités de Minkowski]
The deficiency $\mathrm{Def}(\mathrm{G})$ of a finitely presented pro-$p$ group $\mathrm{G}$ is the difference between its minimal numbers of relations and generators. For a number field $\mathbb{K}$ with maximal unramified $p$-extension $\mathbb{K}_\emptyset $, set $\mathrm{G}_\emptyset = \mathrm{Gal}(\mathbb{K}_\emptyset /\mathbb{K})$. Shafarevich (and independently Koch) showed
\[0\le \mathrm{Def}(\mathrm{G}_\emptyset ) \le \dim (Ø_\mathbb{K}^\times /(Ø_\mathbb{K}^{\times })^p).\] |
We explore connections between the relations of $\mathrm{G}_\emptyset $ and the Galois module structure of the units in the tower $\mathbb{K}_\emptyset /\mathbb{K}$. If $\mu _p \lnot \subset \mathbb{K}$, we give an exact formula for $\mathrm{Def}(\mathrm{G}_\emptyset )$ in terms of the number of independent Minkowski units in the tower. We also study the depth of the relations of $\mathrm{G}_\emptyset $ in the Zassenhaus filtration and provide evidence that the Shafarevich–Koch upper bound is “almost always” sharp. In the other direction, we give the first examples of infinite $\mathrm{G}_\emptyset $ with $\mathrm{Def}(\mathrm{G}_\emptyset )=0$ and $\dim (Ø_\mathbb{K}^\times /(Ø_\mathbb{K}^{\times })^p)$ large, so that the upper bound is not sharp.
Le défaut $\mathrm{Def}(\mathrm{G})$ d’un pro-$p$ groupe $\mathrm{G}$ de type fini est la différence entre son nombre minimal de relations et son nombre minimal de générateurs. Pour un corps de nombres $\mathbb{K}$ de $p$-extension non ramifiée maximale $\mathbb{K}_\emptyset $, posons $\mathrm{G}_\emptyset = \mathrm{Gal}(\mathbb{K}_\emptyset /\mathbb{K})$. Shafarevich (et indépendamment Koch) a montré que
\[0\le \mathrm{Def}(\mathrm{G}_\emptyset ) \le \dim (Ø_\mathbb{K}^\times /(Ø_\mathbb{K}^{\times })^p).\] |
Nous explorons les connexions entre les relations de $\mathrm{G}_\emptyset $ et la structure galoisienne des unités dans la tour $\mathbb{K}_\emptyset /\mathbb{K}$. Si $\mu _p \lnot \subset \mathbb{K}$, nous donnons une formule exacte pour $\mathrm{Def}(\mathrm{G}_\emptyset )$ en termes du nombre d’unités de Minkowski indépendantes dans la tour. Nous étudions également la profondeur des relations de $\mathrm{G}_\emptyset $ suivant la filtration de Zassenhaus et montrons que la borne supérieure de Shafarevich–Koch est « presque toujours » optimale. Mais dans l’autre sens, nous donnons les premiers exemples pour lesquels $\mathrm{G}_\emptyset $ est infini avec $\mathrm{Def}(\mathrm{G}_\emptyset )=0$ et $\dim (Ø_\mathbb{K}^\times /(Ø_\mathbb{K}^{\times })^p)$ grand, de sorte que la borne supérieure n’est pas optimale.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Deficiency, Golod–Shafarevich polynomial, $p$-class field tower, Zassenhaus filtration
Mots-clés : Défaut, polynôme de Golod–Shafarevich, $p$-tour de Hilbert, filtration de Zassenhaus
Hajir, Farshid 1 ; Maire, Christian 2 ; Ramakrishna, Ravi 3

@article{AIF_2025__75_4_1415_0, author = {Hajir, Farshid and Maire, Christian and Ramakrishna, Ravi}, title = {Deficiency of $p$-class tower groups and {Minkowski} units}, journal = {Annales de l'Institut Fourier}, pages = {1415--1462}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {75}, number = {4}, year = {2025}, doi = {10.5802/aif.3677}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3677/} }
TY - JOUR AU - Hajir, Farshid AU - Maire, Christian AU - Ramakrishna, Ravi TI - Deficiency of $p$-class tower groups and Minkowski units JO - Annales de l'Institut Fourier PY - 2025 SP - 1415 EP - 1462 VL - 75 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3677/ DO - 10.5802/aif.3677 LA - en ID - AIF_2025__75_4_1415_0 ER -
%0 Journal Article %A Hajir, Farshid %A Maire, Christian %A Ramakrishna, Ravi %T Deficiency of $p$-class tower groups and Minkowski units %J Annales de l'Institut Fourier %D 2025 %P 1415-1462 %V 75 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3677/ %R 10.5802/aif.3677 %G en %F AIF_2025__75_4_1415_0
Hajir, Farshid; Maire, Christian; Ramakrishna, Ravi. Deficiency of $p$-class tower groups and Minkowski units. Annales de l'Institut Fourier, Tome 75 (2025) no. 4, pp. 1415-1462. doi : 10.5802/aif.3677. https://aif.centre-mersenne.org/articles/10.5802/aif.3677/
[1] On some classes of closed pro--groups, Math. USSR, Izv., Volume 9 (1965) no. 4, pp. 663-691 | DOI | Zbl
[2] Imaginary quadratic fields with cyclic , J. Number Theory, Volume 67 (1997) no. 2, pp. 229-245 | DOI | MR | Zbl
[3] The MAGMA algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[4] The -class tower of , Geometry, algebra, number theory, and their information technology applications (Springer Proceedings in Mathematics & Statistics), Volume 251, Springer (2018), pp. 71-80 | Zbl
[5] Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, 11, John Wiley & Sons, 1988 | MR | Zbl
[6] Analytic pro- groups, London Mathematical Society Lecture Note Series, 157, Cambridge University Press, 1999 | DOI | MR | Zbl
[7] Geometric Galois representations, Elliptic curves, modular forms, and Fermat’s last theorem (Series in Number Theory), Volume 1, International Press, 1995, pp. 41-78 | Zbl
[8] On the -rank of the class groups of quadratic number fields, Invent. Math., Volume 167 (2007) no. 3, pp. 455-513 | DOI | MR | Zbl
[9] On the class field tower, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 28 (1964), pp. 261-272 | MR | Zbl
[10] Class Field Theory, From theory to practice, Springer Monographs in Mathematics, Springer, 2005 | MR
[11] On the -ramified, -split -class field towers over an extension of degree prime to , J. Number Theory, Volume 129 (2009) no. 11, pp. 2843-2852 | DOI | MR | Zbl
[12] Extensions cycliques -totalement ramifiées, Publ. Math. Besançon, Volume 1998 (1998), 6, 17 pages | Numdam
[13] On the Shafarevich group of restricted ramification extensions of number fields in the tame case, Indiana Univ. Math. J., Volume 70 (2021) no. 6, pp. 2693-2710 | DOI | MR | Zbl
[14] Number Fields with Class Number congruent to mod and Hilbert’s Theorem 94, J. Number Theory, Volume 8 (1976), pp. 271-279 | DOI | MR | Zbl
[15] Galois Theory of -Extensions, Springer Monographs in Mathematics, Springer, 2002 | DOI | MR | Zbl
[16] Mild pro-p-groups and Galois groups of -extensions of , J. Reine Angew. Math., Volume 596 (2006), pp. 155-182 | MR | Zbl
[17] Mild pro--groups and -extensions of with restricted ramification, J. Algebra, Volume 332 (2011), pp. 136-158 | DOI | MR | Zbl
[18] Groupes analytiques -adiques, Publ. Math., Inst. Hautes Étud. Sci., Volume 26 (1965), pp. 389-603 | MR | Zbl
[19] A predicted distribution for Galois groups of maximal unramified extensions, Invent. Math., Volume 237 (2024), pp. 49-116 | DOI | MR | Zbl
[20] Cohomology of number fields and analytic pro--groups, Mosc. Math. J., Volume 10 (2010) no. 2, pp. 399-414 | DOI | MR | Zbl
[21] On the quotients of the maximal unramified 2-extensions of a number field, Doc. Math., Volume 23 (2018), pp. 1263-1290 | DOI | MR | Zbl
[22] Tours de corps de classes et estimations de discriminants, Invent. Math., Volume 44 (1978), pp. 65-73 | DOI | MR | Zbl
[23] Notes on étale cohomology of number fields, Ann. Sci. Éc. Norm. Supér., Volume 6 (1973), pp. 521-553 | DOI | Numdam | MR | Zbl
[24] Cohomology of Number Fields, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2013 (second edition, corrected second printing) | MR
[25] Construction of maximal unramified -extensions with prescribed Galois groups, Invent. Math., Volume 183 (2011) no. 3, pp. 649-680 | DOI | MR | Zbl
[26] PARI/GP version 2.9.4, 2018 (available from http://pari.math.u-bordeaux.fr/)
[27] Profinite Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 40, Springer, 2010 | DOI | MR | Zbl
[28] On Class Field Towers, Algebraic Number Theory (Cassels, John W. S.; Fröhlich, Albrecht, eds.), Academic Press Inc. (1967), pp. 231-249 | Zbl
[29] Bounded defect in partial Euler characteristics, Bull. Lond. Math. Soc., Volume 28 (1996) no. 5, pp. 463-464 | DOI | MR | Zbl
[30] Rings of integers of type , Doc. Math., Volume 12 (2007), pp. 441-471 | DOI | MR | Zbl
[31] Über Pro--Fundamentalgruppen markierter arithmetischer Kurven, J. Reine Angew. Math., Volume 640 (2010), pp. 203-235 | MR | Zbl
[32] Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. Reine Angew. Math., Volume 166 (1932), pp. 201-203 | DOI | MR | Zbl
[33] Infinite class field towers of quadratic fields, J. Reine Angew. Math., Volume 372 (1986), pp. 209-220 | MR | Zbl
[34] Group Theory, Dover Publications, 1987 | MR
[35] Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer, 1997 | DOI | Numdam | MR
[36] Algebraic number fields, Proceedings of the International Congress of Mathematicians 1962, Inst. Mittag-Leffler (1963), pp. 163-176 | MR | Zbl
[37] Extensions with prescribed ramification points, Publ. Math., Inst. Hautes Étud. Sci., Volume 18 (1964), pp. 71-95 (in Russian; English translation Amer. Math. Soc. Transl., 59, p. 128-149) | MR
[38] On a theorem concerning on infinite dimensionality of an associative algebra, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 29 (1965), pp. 208-214 in Russian; English translation Amer. Mat. Soc. Transl. (2) 82, p. 237-242 | MR | Zbl
[39] On Demuškin groups with involution, Ann. Sci. Éc. Norm. Supér., Volume 22 (1989) no. 4, pp. 555-567 | DOI | Numdam | MR | Zbl
[40] On the Fontaine–Mazur conjecture for CM-fields, Compos. Math., Volume 131 (2002) no. 3, pp. 341-354 | DOI | MR | Zbl
[41] Free quotients of Demushkin groups with operators (2004) (preprint)
Cité par Sources :