[Une borne supérieure sur le dénominateur de classes d’Eisenstein dans les variétés de Bianchi]
Une conjecture générale de Harder relie le dénominateur de la cohomologie d’Eisenstein de certains espaces localement symétriques à des valeurs spéciales de fonctions . Dans cet article, nous considérons l’espace localement symétrique associé à où est un corps quadratique imaginaire. Berger donne une borne inférieure sur le dénominateur de la cohomologie d’Eisenstein dans certains cas. Nous montrons comment des travaux d’Ito et de Sczech peuvent être utilisés pour donner une borne supérieure en terme de valeurs spéciales d’une fonction . Quand le nombre de classe de est égal à un, nous combinons ce résultat avec celui de Berger pour obtenir le dénominateur exact.
A general conjecture of Harder relates the denominator of the Eisenstein cohomology of certain locally symmetric spaces to special values of -functions. In this paper we consider the locally symmetric space associated to where is an imaginary quadratic field. Berger proves a lower bound on the denominator of the Eisenstein cohomology in certain cases. We show how results of Ito and Sczech can be used to prove an upper bound on the denominator in terms of a special value of an -function. When the class number of is one, we combine this result with Berger’s result to obtain the exact denominator.
Révisé le :
Accepté le :
Première publication :
Keywords: Eisenstein cohomology, Bianchi manifolds, Sczech cocycle, $L$-functions
Mots-clés : Cohomologie d’Eisenstein, variété de Bianchi, cocycle de Sczech, fonction $L$
Branchereau, Romain 1
@unpublished{AIF_0__0_0_A156_0, author = {Branchereau, Romain}, title = {An upper bound on the denominator of {Eisenstein} classes in {Bianchi} manifolds}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2025}, doi = {10.5802/aif.3671}, language = {en}, note = {Online first}, }
Branchereau, Romain. An upper bound on the denominator of Eisenstein classes in Bianchi manifolds. Annales de l'Institut Fourier, Online first, 50 p.
[1] Denominators of Eisenstein cohomology classes for over imaginary quadratic fields, Manuscr. Math., Volume 125 (2008) no. 4, pp. 427-470 | DOI | MR | Zbl
[2] On the Eisenstein ideal for imaginary quadratic fields, Compos. Math., Volume 145 (2009) no. 3, pp. 603-632 | DOI | MR | Zbl
[3] Transgressions of the Euler class and Eisenstein cohomology of , Jpn. J. Math. (3), Volume 15 (2020) no. 2, pp. 311-379 | DOI | MR | Zbl
[4] Eisenstein cohomology classes for over imaginary quadratic fields, J. Reine Angew. Math., Volume 2023 (2023) no. 797, pp. 1-40 | MR | Zbl
[5] Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser, 2006 no. 1 | MR
[6] Primes of the form . Fermat, class field theory and complex multiplication, John Wiley & Sons, 1989, xiv+351 pages | MR
[7] -functions of elliptic curves with complex multiplication, II, Acta Arith., Volume 19 (1971) no. 3, pp. 311-317 | DOI | Zbl
[8] Nenner der Eisensteinkohomologie der über imaginär quadratischen Zahlkörpern, Ph. D. Thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn (Germany) (2005) | MR
[9] Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 16, Springer, 1988, x+291 pages | DOI | MR
[10] On the critical values of Hecke -functions for imaginary quadratic fields, Invent. Math., Volume 79 (1985) no. 1, pp. 79-94 | DOI | MR | Zbl
[11] Eisenstein cohomology of arithmetic groups. The case , Invent. Math., Volume 89 (1987) no. 1, pp. 37-118 | DOI | MR | Zbl
[12] Eisenstein Cohomology for and Special Values of -Functions, Cohomology of Arithmetic Groups (Cogdell, James W.; Harder, Günter; Kudla, Stephen; Shahidi, Freydoon, eds.), Springer (2018), pp. 51-82 | DOI | Zbl
[13] Algebraic topology, Mathematics: Theory & Applications, Cambridge University Press, 2001 https://pi.math.cornell.edu/~hatcher/at/at.pdf
[14] A function on the upper half space which is analogous to the imaginary part of ., J. Reine Angew. Math., Volume 373 (1987), pp. 148-165 | MR | Zbl
[15] Geometry of compactifications of locally symmetric spaces, Ann. Inst. Fourier, Volume 52 (2002) no. 2, pp. 457-559 | DOI | Numdam | MR | Zbl
[16] Eisenstein-Kronecker classes, integrality of critical values of Hecke -functions and -adic interpolation (2020) | arXiv
[17] Eisenstein-Kohomologie von , Bonner Mathematische Schriften, 222, Universität Bonn, Mathematisches Institut, 1991, 159 pages (Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991) | MR
[18] Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, 231, Springer, 1978, xi+261 pages | DOI | MR
[19] Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, Springer, 1990, xviii+433 pages (with an appendix by Karl Rubin) | DOI | MR
[20] Nenner von Eisensteinklassen auf Hilbertschen Modulvarietäten und die -adische Klassenzahlformel, Bonner Mathematische Schriften, 247, Universität Bonn, Mathematisches Institut, 1993, v+145 pages (Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1992) | MR
[21] Nombres de Hurwitz et unités elliptiques. Un critère de régularité pour les extensions abéliennes d’un corps quadratique imaginaire, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 3, pp. 297-389 | DOI | Numdam | MR | Zbl
[22] Eisenstein series and cohomology of arithmetic groups: the generic case, Invent. Math., Volume 116 (1994) no. 1-3, pp. 481-511 | DOI | MR | Zbl
[23] Dedekindsummen mit elliptischen Funktionen, Invent. Math., Volume 76 (1984) no. 3, pp. 523-551 | DOI | MR | Zbl
[24] Dedekind sums and power residue symbols, Compos. Math., Volume 59 (1986) no. 1, pp. 89-112 | Numdam | MR | Zbl
[25] Iwasawa Theory of Elliptic curves with Complex Multiplication, Perspectives in Mathematics, Academic Press Inc.; Harcourt Brace Jovanovich, 1987 | MR
[26] The Eisenstein measure and real quadratic fields, Théorie des nombres / Number Theory: Proceedings of the International Number Theory Conference held at Université Laval, July 5-18, 1987 (Koninck, Jean M. de; Levesque, Claude, eds.), Walter de Gruyter, 1989, pp. 887-927 | DOI | MR | Zbl
[27] Elliptic Functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 1976 | DOI | MR
[28] Eisensteinkohomologie und Dedekindsummen für über imaginär-quadratischen Zahlkörpern, J. Reine Angew. Math., Volume 389 (1988), pp. 90-121 | DOI | MR | Zbl
Cité par Sources :