An upper bound on the denominator of Eisenstein classes in Bianchi manifolds
[Une borne supérieure sur le dénominateur de classes d’Eisenstein dans les variétés de Bianchi]
Annales de l'Institut Fourier, Online first, 50 p.

Une conjecture générale de Harder relie le dénominateur de la cohomologie d’Eisenstein de certains espaces localement symétriques à des valeurs spéciales de fonctions L. Dans cet article, nous considérons l’espace localement symétrique Y Γ =SL 2 (𝒪) 3 associé à SL 2 K est un corps quadratique imaginaire. Berger donne une borne inférieure sur le dénominateur de la cohomologie d’Eisenstein dans certains cas. Nous montrons comment des travaux d’Ito et de Sczech peuvent être utilisés pour donner une borne supérieure en terme de valeurs spéciales d’une fonction L. Quand le nombre de classe de K est égal à un, nous combinons ce résultat avec celui de Berger pour obtenir le dénominateur exact.

A general conjecture of Harder relates the denominator of the Eisenstein cohomology of certain locally symmetric spaces to special values of L-functions. In this paper we consider the locally symmetric space Y Γ =SL 2 (𝒪) 3 associated to SL 2 (K) where K is an imaginary quadratic field. Berger proves a lower bound on the denominator of the Eisenstein cohomology in certain cases. We show how results of Ito and Sczech can be used to prove an upper bound on the denominator in terms of a special value of an L-function. When the class number of K is one, we combine this result with Berger’s result to obtain the exact denominator.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3671
Classification : 11F75, 11F67, 11F41
Keywords: Eisenstein cohomology, Bianchi manifolds, Sczech cocycle, $L$-functions
Mots-clés : Cohomologie d’Eisenstein, variété de Bianchi, cocycle de Sczech, fonction $L$

Branchereau, Romain 1

1 Mathematics Department Mcgill Burnside Hall 805 Sherbrooke Street West Montreal, Quebec H3A 0B9, Canada
@unpublished{AIF_0__0_0_A156_0,
     author = {Branchereau, Romain},
     title = {An upper bound on the denominator of {Eisenstein} classes in {Bianchi} manifolds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2025},
     doi = {10.5802/aif.3671},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Branchereau, Romain
TI  - An upper bound on the denominator of Eisenstein classes in Bianchi manifolds
JO  - Annales de l'Institut Fourier
PY  - 2025
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3671
LA  - en
ID  - AIF_0__0_0_A156_0
ER  - 
%0 Unpublished Work
%A Branchereau, Romain
%T An upper bound on the denominator of Eisenstein classes in Bianchi manifolds
%J Annales de l'Institut Fourier
%D 2025
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3671
%G en
%F AIF_0__0_0_A156_0
Branchereau, Romain. An upper bound on the denominator of Eisenstein classes in Bianchi manifolds. Annales de l'Institut Fourier, Online first, 50 p.

[1] Berger, Tobias Denominators of Eisenstein cohomology classes for GL 2 over imaginary quadratic fields, Manuscr. Math., Volume 125 (2008) no. 4, pp. 427-470 | DOI | MR | Zbl

[2] Berger, Tobias On the Eisenstein ideal for imaginary quadratic fields, Compos. Math., Volume 145 (2009) no. 3, pp. 603-632 | DOI | MR | Zbl

[3] Bergeron, Nicolas; Charollois, Pierre; García, Luis E. Transgressions of the Euler class and Eisenstein cohomology of GL N (Z), Jpn. J. Math. (3), Volume 15 (2020) no. 2, pp. 311-379 | DOI | MR | Zbl

[4] Bergeron, Nicolas; Charollois, Pierre; García, Luis E. Eisenstein cohomology classes for GL N over imaginary quadratic fields, J. Reine Angew. Math., Volume 2023 (2023) no. 797, pp. 1-40 | MR | Zbl

[5] Borel, Armand; Ji, Lizhen Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser, 2006 no. 1 | MR

[6] Cox, David A. Primes of the form x 2 +ny 2 . Fermat, class field theory and complex multiplication, John Wiley & Sons, 1989, xiv+351 pages | MR

[7] Damerell, R. L-functions of elliptic curves with complex multiplication, II, Acta Arith., Volume 19 (1971) no. 3, pp. 311-317 | DOI | Zbl

[8] Feldhusen, Dirk Nenner der Eisensteinkohomologie der GL 2 über imaginär quadratischen Zahlkörpern, Ph. D. Thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn (Germany) (2005) | MR

[9] van der Geer, Gerard Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 16, Springer, 1988, x+291 pages | DOI | MR

[10] Greenberg, Ralph On the critical values of Hecke L-functions for imaginary quadratic fields, Invent. Math., Volume 79 (1985) no. 1, pp. 79-94 | DOI | MR | Zbl

[11] Harder, Günter Eisenstein cohomology of arithmetic groups. The case GL 2 , Invent. Math., Volume 89 (1987) no. 1, pp. 37-118 | DOI | MR | Zbl

[12] Harder, Günter Eisenstein Cohomology for SL 2 ([i]) and Special Values of L-Functions, Cohomology of Arithmetic Groups (Cogdell, James W.; Harder, Günter; Kudla, Stephen; Shahidi, Freydoon, eds.), Springer (2018), pp. 51-82 | DOI | Zbl

[13] Hatcher, Allen Algebraic topology, Mathematics: Theory & Applications, Cambridge University Press, 2001 https://pi.math.cornell.edu/~hatcher/at/at.pdf

[14] Ito, Hiroshi A function on the upper half space which is analogous to the imaginary part of logη(z)., J. Reine Angew. Math., Volume 373 (1987), pp. 148-165 | MR | Zbl

[15] Ji, Lizhen; Macpherson, Robert Geometry of compactifications of locally symmetric spaces, Ann. Inst. Fourier, Volume 52 (2002) no. 2, pp. 457-559 | DOI | Numdam | MR | Zbl

[16] Kings, Guido; Sprang, Johannes Eisenstein-Kronecker classes, integrality of critical values of Hecke L-functions and p-adic interpolation (2020) | arXiv

[17] König, Harald Eisenstein-Kohomologie von SL 2 ([i]), Bonner Mathematische Schriften, 222, Universität Bonn, Mathematisches Institut, 1991, 159 pages (Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1991) | MR

[18] Lang, Serge Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften, 231, Springer, 1978, xi+261 pages | DOI | MR

[19] Lang, Serge Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, Springer, 1990, xviii+433 pages (with an appendix by Karl Rubin) | DOI | MR

[20] Maennel, Hartmut Nenner von Eisensteinklassen auf Hilbertschen Modulvarietäten und die p-adische Klassenzahlformel, Bonner Mathematische Schriften, 247, Universität Bonn, Mathematisches Institut, 1993, v+145 pages (Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1992) | MR

[21] Robert, Gilles Nombres de Hurwitz et unités elliptiques. Un critère de régularité pour les extensions abéliennes d’un corps quadratique imaginaire, Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 3, pp. 297-389 | DOI | Numdam | MR | Zbl

[22] Schwermer, Joachim Eisenstein series and cohomology of arithmetic groups: the generic case, Invent. Math., Volume 116 (1994) no. 1-3, pp. 481-511 | DOI | MR | Zbl

[23] Sczech, Robert Dedekindsummen mit elliptischen Funktionen, Invent. Math., Volume 76 (1984) no. 3, pp. 523-551 | DOI | MR | Zbl

[24] Sczech, Robert Dedekind sums and power residue symbols, Compos. Math., Volume 59 (1986) no. 1, pp. 89-112 | Numdam | MR | Zbl

[25] de Shalit, Ehud Iwasawa Theory of Elliptic curves with Complex Multiplication, Perspectives in Mathematics, Academic Press Inc.; Harcourt Brace Jovanovich, 1987 | MR

[26] Stevens, Glenn The Eisenstein measure and real quadratic fields, Théorie des nombres / Number Theory: Proceedings of the International Number Theory Conference held at Université Laval, July 5-18, 1987 (Koninck, Jean M. de; Levesque, Claude, eds.), Walter de Gruyter, 1989, pp. 887-927 | DOI | MR | Zbl

[27] Weil, André Elliptic Functions according to Eisenstein and Kronecker, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, 1976 | DOI | MR

[28] Weselmann, Uwe Eisensteinkohomologie und Dedekindsummen für GL 2 über imaginär-quadratischen Zahlkörpern, J. Reine Angew. Math., Volume 389 (1988), pp. 90-121 | DOI | MR | Zbl

Cité par Sources :