[Nombres de décomposition pour le bloc principal de et ]
Nous calculons les nombres de décomposition des caractères unipotents du -bloc unipotent d’un groupe fini de type de Lie ou lorsque est une puissance d’un nombre premier impair et est un nombre premier impair avec d’ordre dans . En cours de route, nous étendons à ces groupes finis les résultats de [12] sur le graphe de branchement pour l’induction et la restriction de Harish-Chandra.
We compute the decomposition numbers of the unipotent characters lying in the principal -block of a finite group of Lie type or when is an odd prime power and is an odd prime number such that the order of mod is . Along the way, we extend to these finite groups the results of [12] on the branching graph for Harish-Chandra induction and restriction.
Révisé le :
Accepté le :
Première publication :
Keywords: Finite groups of Lie type, Decomposition numbers.
Mot clés : Groupes finis de type Lie, nombres de décomposition.
Dudas, Olivier 1 ; Norton, Emily 2
@unpublished{AIF_0__0_0_A110_0, author = {Dudas, Olivier and Norton, Emily}, title = {Decomposition numbers for the principal $\Phi _{2n}$-block of $\mathrm{Sp}_{4n}(q)$ and $\mathrm{SO}_{4n+1}(q)$}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3659}, language = {en}, note = {Online first}, }
TY - UNPB AU - Dudas, Olivier AU - Norton, Emily TI - Decomposition numbers for the principal $\Phi _{2n}$-block of $\mathrm{Sp}_{4n}(q)$ and $\mathrm{SO}_{4n+1}(q)$ JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3659 LA - en ID - AIF_0__0_0_A110_0 ER -
%0 Unpublished Work %A Dudas, Olivier %A Norton, Emily %T Decomposition numbers for the principal $\Phi _{2n}$-block of $\mathrm{Sp}_{4n}(q)$ and $\mathrm{SO}_{4n+1}(q)$ %J Annales de l'Institut Fourier %D 2024 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3659 %G en %F AIF_0__0_0_A110_0
Dudas, Olivier; Norton, Emily. Decomposition numbers for the principal $\Phi _{2n}$-block of $\mathrm{Sp}_{4n}(q)$ and $\mathrm{SO}_{4n+1}(q)$. Annales de l'Institut Fourier, Online first, 44 p.
[1] Derived categories and Deligne–Lusztig varieties II, Ann. Math., Volume 185 (2017) no. 2, pp. 609-670 | DOI | MR | Zbl
[2] Isométries de caractères et équivalences de Morita ou dérivées, Publ. Math., Inst. Hautes Étud. Sci. (1990) no. 71, pp. 45-63 | DOI | Numdam | MR | Zbl
[3] Generic blocks of finite reductive groups, Représentations unipotentes génériques et blocs des groupes réductifs finis (Astérisque), Société Mathématique de France, 1993 no. 212, pp. 7-92 | Numdam | MR | Zbl
[4] Unitriangular shape of decomposition matrices of unipotent blocks, Ann. Math., Volume 192 (2020) no. 2, pp. 583-663 | DOI | MR | Zbl
[5] Cubist algebras, Adv. Math., Volume 217 (2008) no. 4, pp. 1614-1670 | DOI | MR | Zbl
[6] Representations of reductive groups over finite fields, Ann. Math., Volume 103 (1976) no. 1, pp. 103-161 | DOI | MR | Zbl
[7] A note on decomposition numbers for groups of Lie type of small rank, J. Algebra, Volume 388 (2013), pp. 364-373 | DOI | MR | Zbl
[8] Decomposition matrices for low-rank unitary groups, Proc. Lond. Math. Soc., Volume 110 (2015) no. 6, pp. 1517-1557 | DOI | MR | Zbl
[9] Decomposition matrices for exceptional groups at , J. Pure Appl. Algebra, Volume 220 (2016) no. 3, pp. 1096-1121 | DOI | MR | Zbl
[10] Decomposition matrices for groups of Lie type in non-defining characteristic (2020) (https://arxiv.org/abs/2001.06395)
[11] Categorical actions on unipotent representations of finite classical groups, Categorification and higher representation theory (Contemporary Mathematics), Volume 683, American Mathematical Society, 2017, pp. 41-104 | DOI | MR | Zbl
[12] Categorical actions on unipotent representations of finite unitary groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 129 (2019), pp. 129-197 | DOI | MR | Zbl
[13] Generalized Jack polynomials and the representation theory of rational Cherednik algebras, Sel. Math., New Ser., Volume 16 (2010) no. 4, pp. 791-818 | DOI | MR | Zbl
[14] Weight two blocks of Iwahori–Hecke algebras of type B, J. Algebra, Volume 303 (2006) no. 1, pp. 154-201 | DOI | MR | Zbl
[15] On large Zsigmondy primes, Proc. Am. Math. Soc., Volume 102 (1988) no. 1, pp. 29-36 | DOI | MR | Zbl
[16] Branching functions of and Jantzen–Seitz problem for Ariki–Koike algebras, Adv. Math., Volume 141 (1999) no. 2, pp. 322-365 | DOI | MR | Zbl
[17] Generalized Harish-Chandra theory for unipotent characters of finite classical groups, J. Algebra, Volume 104 (1986) no. 2, pp. 301-309 | DOI | MR | Zbl
[18] The blocks of finite classical groups, J. Reine Angew. Math., Volume 396 (1989), pp. 122-191 | MR | Zbl
[19] Brauer trees in classical groups, J. Algebra, Volume 131 (1990) no. 1, pp. 179-225 | DOI | MR | Zbl
[20] Basic sets of Brauer characters of finite groups of Lie type. II, J. Lond. Math. Soc., Volume 47 (1993) no. 2, pp. 255-268 | DOI | MR | Zbl
[21] Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math., Volume 418 (1991), pp. 173-188 https://eudml.org/doc/153337 | MR | Zbl
[22] Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Mathematical Society Monographs. New Series, 21, Clarendon Press, 2000, xvi+446 pages | DOI | MR | Zbl
[23] Triple crystal action in Fock spaces, Adv. Math., Volume 329 (2018), pp. 916-954 | DOI | MR | Zbl
[24] Character formulas and Bernstein–Gelfand–Gelfand resolutions for Cherednik algebra modules, Proc. Lond. Math. Soc., Volume 113 (2016) no. 6, pp. 868-906 | DOI | MR | Zbl
[25] Decomposition numbers of finite classical groups for linear primes, J. Reine Angew. Math., Volume 485 (1997), pp. 55-91 | DOI | MR | Zbl
[26] Decomposition numbers of and , J. Algebra, Volume 413 (2014), pp. 15-40 | DOI | MR | Zbl
[27] Combinatorics of representations of at , Commun. Math. Phys., Volume 136 (1991) no. 3, pp. 543-566 | DOI | MR | Zbl
[28] Characters of reductive groups over a finite field, Annals of Mathematics Studies, 107, Princeton University Press, 1984, xxi+384 pages | DOI | MR | Zbl
[29] The development version of the CHEVIE package of GAP3, J. Algebra, Volume 435 (2015), pp. 308-336 | DOI | MR | Zbl
[30] Decomposition numbers of , J. Algebra, Volume 199 (1998) no. 2, pp. 544-555 | DOI | MR | Zbl
[31] Modular representations of finite groups and Lie theory (2022) (https://arxiv.org/abs/2202.08451)
[32] A property of special representations of Weyl groups, J. Reine Angew. Math., Volume 343 (1983), pp. 212-220 | DOI | MR | Zbl
[33] Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198 | DOI | MR | Zbl
[34] Canonical bases of higher-level -deformed Fock spaces and Kazhdan–Lusztig polynomials, Physical combinatorics (Kyoto, 1999) (Progress in Mathematics), Volume 191, Birkhäuser, 2000, pp. 249-299 | DOI | MR | Zbl
Cité par Sources :