Decomposition numbers for the principal Φ 2n -block of Sp 4n (q) and SO 4n+1 (q)
[Nombres de décomposition pour le bloc principal Φ 2n de Sp 4n (q) et SO 4n+1 (q)]
Annales de l'Institut Fourier, Online first, 44 p.

Nous calculons les nombres de décomposition des caractères unipotents du -bloc unipotent d’un groupe fini de type de Lie B 2n (q) ou C 2n (q) lorsque q est une puissance d’un nombre premier impair et est un nombre premier impair avec q d’ordre 2n dans 𝔽 . En cours de route, nous étendons à ces groupes finis les résultats de [12] sur le graphe de branchement pour l’induction et la restriction de Harish-Chandra.

We compute the decomposition numbers of the unipotent characters lying in the principal -block of a finite group of Lie type B 2n (q) or C 2n (q) when q is an odd prime power and is an odd prime number such that the order of q mod is 2n. Along the way, we extend to these finite groups the results of [12] on the branching graph for Harish-Chandra induction and restriction.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3659
Classification : 20C20, 20C33
Keywords: Finite groups of Lie type, Decomposition numbers.
Mot clés : Groupes finis de type Lie, nombres de décomposition.

Dudas, Olivier 1 ; Norton, Emily 2

1 Aix-Marseille Université, CNRS, Institut de Mathématiques de Marseille – I2M Campus de Luminy, Avenue de Luminy, Case 930, 13288 Marseille Cedex 9 (France)
2 School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent, CT2 7NZ (United Kingdom)
@unpublished{AIF_0__0_0_A110_0,
     author = {Dudas, Olivier and Norton, Emily},
     title = {Decomposition numbers for the principal $\Phi _{2n}$-block of $\mathrm{Sp}_{4n}(q)$ and $\mathrm{SO}_{4n+1}(q)$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3659},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Dudas, Olivier
AU  - Norton, Emily
TI  - Decomposition numbers for the principal $\Phi _{2n}$-block of $\mathrm{Sp}_{4n}(q)$ and $\mathrm{SO}_{4n+1}(q)$
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3659
LA  - en
ID  - AIF_0__0_0_A110_0
ER  - 
%0 Unpublished Work
%A Dudas, Olivier
%A Norton, Emily
%T Decomposition numbers for the principal $\Phi _{2n}$-block of $\mathrm{Sp}_{4n}(q)$ and $\mathrm{SO}_{4n+1}(q)$
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3659
%G en
%F AIF_0__0_0_A110_0
Dudas, Olivier; Norton, Emily. Decomposition numbers for the principal $\Phi _{2n}$-block of $\mathrm{Sp}_{4n}(q)$ and $\mathrm{SO}_{4n+1}(q)$. Annales de l'Institut Fourier, Online first, 44 p.

[1] Bonnafé, Cédric; Dat, Jean-François; Rouquier, Raphaël Derived categories and Deligne–Lusztig varieties II, Ann. Math., Volume 185 (2017) no. 2, pp. 609-670 | DOI | MR | Zbl

[2] Broué, Michel Isométries de caractères et équivalences de Morita ou dérivées, Publ. Math., Inst. Hautes Étud. Sci. (1990) no. 71, pp. 45-63 | DOI | Numdam | MR | Zbl

[3] Broué, Michel; Malle, Gunter; Michel, Jean Generic blocks of finite reductive groups, Représentations unipotentes génériques et blocs des groupes réductifs finis (Astérisque), Société Mathématique de France, 1993 no. 212, pp. 7-92 | Numdam | MR | Zbl

[4] Brunat, Olivier; Dudas, Olivier; Taylor, Jay Unitriangular shape of decomposition matrices of unipotent blocks, Ann. Math., Volume 192 (2020) no. 2, pp. 583-663 | DOI | MR | Zbl

[5] Chuang, Joseph; Turner, Will Cubist algebras, Adv. Math., Volume 217 (2008) no. 4, pp. 1614-1670 | DOI | MR | Zbl

[6] Deligne, Pierre; Lusztig, George Representations of reductive groups over finite fields, Ann. Math., Volume 103 (1976) no. 1, pp. 103-161 | DOI | MR | Zbl

[7] Dudas, Olivier A note on decomposition numbers for groups of Lie type of small rank, J. Algebra, Volume 388 (2013), pp. 364-373 | DOI | MR | Zbl

[8] Dudas, Olivier; Malle, Gunter Decomposition matrices for low-rank unitary groups, Proc. Lond. Math. Soc., Volume 110 (2015) no. 6, pp. 1517-1557 | DOI | MR | Zbl

[9] Dudas, Olivier; Malle, Gunter Decomposition matrices for exceptional groups at d=4, J. Pure Appl. Algebra, Volume 220 (2016) no. 3, pp. 1096-1121 | DOI | MR | Zbl

[10] Dudas, Olivier; Malle, Gunter Decomposition matrices for groups of Lie type in non-defining characteristic (2020) (https://arxiv.org/abs/2001.06395)

[11] Dudas, Olivier; Varagnolo, Michela; Vasserot, Eric Categorical actions on unipotent representations of finite classical groups, Categorification and higher representation theory (Contemporary Mathematics), Volume 683, American Mathematical Society, 2017, pp. 41-104 | DOI | MR | Zbl

[12] Dudas, Olivier; Varagnolo, Michela; Vasserot, Eric Categorical actions on unipotent representations of finite unitary groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 129 (2019), pp. 129-197 | DOI | MR | Zbl

[13] Dunkl, Charles; Griffeth, Stephen Generalized Jack polynomials and the representation theory of rational Cherednik algebras, Sel. Math., New Ser., Volume 16 (2010) no. 4, pp. 791-818 | DOI | MR | Zbl

[14] Fayers, Matthew Weight two blocks of Iwahori–Hecke algebras of type B, J. Algebra, Volume 303 (2006) no. 1, pp. 154-201 | DOI | MR | Zbl

[15] Feit, Walter On large Zsigmondy primes, Proc. Am. Math. Soc., Volume 102 (1988) no. 1, pp. 29-36 | DOI | MR | Zbl

[16] Foda, Omar; Leclerc, Bernard; Okado, Masato; Thibon, Jean-Yves; Welsh, Trevor A. Branching functions of A n-1 (1) and Jantzen–Seitz problem for Ariki–Koike algebras, Adv. Math., Volume 141 (1999) no. 2, pp. 322-365 | DOI | MR | Zbl

[17] Fong, Paul; Srinivasan, Bhama Generalized Harish-Chandra theory for unipotent characters of finite classical groups, J. Algebra, Volume 104 (1986) no. 2, pp. 301-309 | DOI | MR | Zbl

[18] Fong, Paul; Srinivasan, Bhama The blocks of finite classical groups, J. Reine Angew. Math., Volume 396 (1989), pp. 122-191 | MR | Zbl

[19] Fong, Paul; Srinivasan, Bhama Brauer trees in classical groups, J. Algebra, Volume 131 (1990) no. 1, pp. 179-225 | DOI | MR | Zbl

[20] Geck, Meinolf Basic sets of Brauer characters of finite groups of Lie type. II, J. Lond. Math. Soc., Volume 47 (1993) no. 2, pp. 255-268 | DOI | MR | Zbl

[21] Geck, Meinolf; Hiss, Gerhard Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math., Volume 418 (1991), pp. 173-188 https://eudml.org/doc/153337 | MR | Zbl

[22] Geck, Meinolf; Pfeiffer, Götz Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Mathematical Society Monographs. New Series, 21, Clarendon Press, 2000, xvi+446 pages | DOI | MR | Zbl

[23] Gerber, Thomas Triple crystal action in Fock spaces, Adv. Math., Volume 329 (2018), pp. 916-954 | DOI | MR | Zbl

[24] Griffeth, Stephen; Norton, Emily Character formulas and Bernstein–Gelfand–Gelfand resolutions for Cherednik algebra modules, Proc. Lond. Math. Soc., Volume 113 (2016) no. 6, pp. 868-906 | DOI | MR | Zbl

[25] Gruber, Jochen; Hiss, Gerhard Decomposition numbers of finite classical groups for linear primes, J. Reine Angew. Math., Volume 485 (1997), pp. 55-91 | DOI | MR | Zbl

[26] Himstedt, Frank; Noeske, Felix Decomposition numbers of SO 7 (q) and Sp 6 (q), J. Algebra, Volume 413 (2014), pp. 15-40 | DOI | MR | Zbl

[27] Jimbo, Michio; Misra, Kailash C.; Miwa, Tetsuji; Okado, Masato Combinatorics of representations of U q (𝔰𝔩 ^(n)) at q=0, Commun. Math. Phys., Volume 136 (1991) no. 3, pp. 543-566 | DOI | MR | Zbl

[28] Lusztig, George Characters of reductive groups over a finite field, Annals of Mathematics Studies, 107, Princeton University Press, 1984, xxi+384 pages | DOI | MR | Zbl

[29] Michel, Jean The development version of the CHEVIE package of GAP3, J. Algebra, Volume 435 (2015), pp. 308-336 | DOI | MR | Zbl

[30] Okuyama, Tetsuro; Waki, Katsushi Decomposition numbers of Sp(4,q), J. Algebra, Volume 199 (1998) no. 2, pp. 544-555 | DOI | MR | Zbl

[31] Rouquier, Raphaël Modular representations of finite groups and Lie theory (2022) (https://arxiv.org/abs/2202.08451)

[32] Spaltenstein, N. A property of special representations of Weyl groups, J. Reine Angew. Math., Volume 343 (1983), pp. 212-220 | DOI | MR | Zbl

[33] Springer, Tonny A. Regular elements of finite reflection groups, Invent. Math., Volume 25 (1974), pp. 159-198 | DOI | MR | Zbl

[34] Uglov, Denis Canonical bases of higher-level q-deformed Fock spaces and Kazhdan–Lusztig polynomials, Physical combinatorics (Kyoto, 1999) (Progress in Mathematics), Volume 191, Birkhäuser, 2000, pp. 249-299 | DOI | MR | Zbl

Cité par Sources :