[Le cône normal intrinsèque pour les champs d’Artin]
Nous étendons la construction du cône normal d’une immersion fermée de schémas à tout morphisme localement de type fini de champs d’Artin supérieurs et montrons que dans le cas de Deligne-Mumford notre construction retrouve le cône normal intrinsèque relatif de Behrend et Fantechi. Nous caractérisons notre extension comme l’unique satisfaisant une courte liste d’axiomes, et l’utilisons pour construire la déformation du cône normal. Comme application de nos méthodes, nous associons à tout morphisme de champs d’Artin muni d’un choix d’une théorie d’obstruction parfaite globale une classe fondamentale virtuelle relative dans le groupe de Chow de Kresch.
We extend the construction of the normal cone of a closed embedding of schemes to any locally morphism of finite type of higher Artin stacks and show that in the Deligne-Mumford case our construction recovers the relative intrinsic normal cone of Behrend and Fantechi. We characterize our extension as the unique one satisfying a short list of axioms, and use it to construct the deformation to the normal cone. As an application of our methods, we associate to any morphism of Artin stacks equipped with a choice of a global perfect obstruction theory a relative virtual fundamental class in the Chow group of Kresch.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Moduli space, normal cone, deformation theory, Artin stack, Chow group
Mot clés : Espace des modules, cône normal, théorie des déformations, champs d’Artin, groupe de Chow
Aranha, Dhyan 1 ; Pstrągowski, Piotr 2
@article{AIF_2024__74_1_71_0, author = {Aranha, Dhyan and Pstr\k{a}gowski, Piotr}, title = {The {Intrinsic} {Normal} {Cone} for {Artin} {Stacks}}, journal = {Annales de l'Institut Fourier}, pages = {71--120}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {1}, year = {2024}, doi = {10.5802/aif.3583}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3583/} }
TY - JOUR AU - Aranha, Dhyan AU - Pstrągowski, Piotr TI - The Intrinsic Normal Cone for Artin Stacks JO - Annales de l'Institut Fourier PY - 2024 SP - 71 EP - 120 VL - 74 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3583/ DO - 10.5802/aif.3583 LA - en ID - AIF_2024__74_1_71_0 ER -
%0 Journal Article %A Aranha, Dhyan %A Pstrągowski, Piotr %T The Intrinsic Normal Cone for Artin Stacks %J Annales de l'Institut Fourier %D 2024 %P 71-120 %V 74 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3583/ %R 10.5802/aif.3583 %G en %F AIF_2024__74_1_71_0
Aranha, Dhyan; Pstrągowski, Piotr. The Intrinsic Normal Cone for Artin Stacks. Annales de l'Institut Fourier, Tome 74 (2024) no. 1, pp. 71-120. doi : 10.5802/aif.3583. https://aif.centre-mersenne.org/articles/10.5802/aif.3583/
[1] Homologie des algèbres commutatives, Grundlehren der Mathematischen Wissenschaften, 206, Springer, 1974, xv+341 pages | DOI | MR
[2] Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol., Volume 18 (2014) no. 2, pp. 1149-1244 | DOI | MR | Zbl
[3] Virtual classes for the working mathematician (2018) (https://arxiv.org/abs/1804.06048)
[4] Gromov–Witten invariants in algebraic geometry, Invent. Math., Volume 127 (1997) no. 3, pp. 601-617 | DOI | MR | Zbl
[5] The intrinsic normal cone, Invent. Math., Volume 128 (1997) no. 1, pp. 45-88 | DOI | MR | Zbl
[6] Completions and derived de Rham cohomology (2012) (https://arxiv.org/abs/1207.6193)
[7] Gauge theory in higher dimensions, The geometric universe (Oxford, 1996), Oxford University Press, 1998, pp. 31-47 | DOI | MR | Zbl
[8] Intersection theory, 2, Springer, 2013
[9] A study in derived algebraic geometry: Volume I: correspondences and duality, Mathematical Surveys and Monographs, 221, American Mathematical Society, 2017
[10] Catégories cofibrées additives et complexe cotangent relatif, Lecture Notes in Mathematics, 79, Springer, 1968, ii+167 pages | MR
[11] Complexe cotangent et déformations. I, Lecture Notes in Mathematics, 239, Springer, 1971, xv+355 pages | DOI | MR
[12] Virtual fundamental classes of derived stacks I (2019) (https://arxiv.org/abs/1909.01332)
[13] Algebraic -theory of quasi-smooth blow-ups and cdh descent, Ann. Henri Lebesgue, Volume 3 (2020), pp. 1091-1116 | DOI | Numdam | MR | Zbl
[14] Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) (Progress in Mathematics), Volume 129, Birkhäuser, 1995, pp. 335-368 | DOI | MR | Zbl
[15] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Commun. Math. Phys., Volume 164 (1994) no. 3, pp. 525-562 http://projecteuclid.org/euclid.cmp/1104270948 | DOI | MR | Zbl
[16] Cycle groups for Artin stacks, Invent. Math., Volume 138 (1999), pp. 495-536 | DOI | MR | Zbl
[17] Quantum -theory, I: Foundations, Duke Math. J., Volume 121 (2004) no. 3, pp. 389-424 | MR | Zbl
[18] Derived Algebraic Geometry, Ph. D. Thesis, Massachusetts Institute of Technology, Dept. of Mathematics (USA) (2004) includes bibliographical references (p. 191-193).
[19] Higher Topos Theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009, xviii+925 pages | DOI | MR
[20] Higher Algebra (2017) (http://www.math.harvard.edu/~lurie/papers/HA.pdf)
[21] Spectral Algebraic Geometry (2018) (http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf)
[22] Curve counting via stable pairs in the derived category, Invent. Math., Volume 178 (2009) no. 2, pp. 407-447 | DOI | MR | Zbl
[23] On the (co-) homology of commutative rings, Applications of Categorical Algebra (New York, 1968) (Proceedings of Symposia in Pure Mathematics), Volume 17, American Mathematical Society (1970), pp. 65-87 | DOI | MR | Zbl
[24] Revêtements étales et groupe fondamental: Séminaire de Géométrie Algébrique du Bois Marie 1960/61 (SGA 1), Lecture Notes in Mathematics, 224, Springer, 2006
[25] Algebraic (geometric) -stacks (1996) (https://arxiv.org/abs/alg-geom/9609014)
[26] Vafa–Witten invariants for projective surfaces I: stable case, J. Algebr. Geom., Volume 29 (2020) no. 4, pp. 603-668 | DOI | MR | Zbl
[27] Higher and derived stacks: a global overview, Algebraic geometry—Seattle 2005. Part 1 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 435-487 | DOI | MR | Zbl
[28] Homotopical algebraic geometry I: Topos theory, Adv. Math., Volume 193 (2005) no. 2, pp. 257-372 | DOI | MR | Zbl
[29] Homotopical algebraic geometry. II. Geometric stacks and applications., Memoirs of the American Mathematical Society, 902, American Mathematical Society, 2008, x+224 pages
Cité par Sources :