Orbifold Chern classes inequalities and applications
[Inégalités de classes de Chern orbifoldes et applications]
Annales de l'Institut Fourier, Tome 73 (2023) no. 6, pp. 2371-2410.

Dans cet article nous prouvons que pour une paire (X,D) avec X une variété de dimension 3 et D un diviseur de bord avec peu de singularités, si (K X +D) est mobile, alors la seconde classe de Chern orbifolde c 2 de (X,D) est pseudoeffective. Cela généralise le résultat classique de Miyaoka sur la pseudoeffectivité de c 2 pour les modèles minimaux. Comme application, nous donnons une solution simple à la conjecture de non-annulation effective de Kawamata en dimension 3, où nous prouvons que H 0 (X,K X +H)0, lorsque K X +H est nef et H un diviseur de Cartier réduit, ample et effectif. De plus, nous étudions la conjecture de Lang–Vojta pour les sous-variétés de codimension 1 et montrons que les variétés minimales de dimension 3 de type général ont un nombre fini de sous-variétés de codimension 1 Fano, Calabi–Yau ou abéliennes avec peu de singularités et dont les classes numériques appartiennent au cône mobile.

In this paper we prove that given a pair (X,D) of a threefold X and a boundary divisor D with mild singularities, if (K X +D) is movable, then the orbifold second Chern class c 2 of (X,D) is pseudoeffective. This generalizes the classical result of Miyaoka on the pseudoeffectivity of c 2 for minimal models. As an application, we give a simple solution to Kawamata’s effective non-vanishing conjecture in dimension 3, where we prove that H 0 (X,K X +H)0, whenever K X +H is nef and H is an ample, effective, reduced Cartier divisor. Furthermore, we study Lang–Vojta’s conjecture for codimension one subvarieties and prove that minimal threefolds of general type have only finitely many Fano, Calabi–Yau or Abelian subvarieties of codimension one that are mildly singular and whose numerical classes belong to the movable cone.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3571
Classification : 14E30, 14J70, 14B05
Keywords: Classification theory, Miyaoka–Yau inequality, Movable cone of divisors, Minimal Models, Effective non-vanishing, Lang–Vojta’s conjecture.
Mot clés : Théorie de la classification, Inégalité de Miyaoka–Yau, cône mobile de diviseurs, modèles minimaux, non-annulation effective, conjecture de Lang–Vojta.

Rousseau, Erwan 1 ; Taji, Behrouz 2

1 Université de Brest CNRS UMR 6205 Laboratoire de Mathématiques de Bretagne Atlantique F-29200 Brest (France)
2 School of Mathematics and Statistics – Red Centre The University of New South Wales NSW 2052 (Australia)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2023__73_6_2371_0,
     author = {Rousseau, Erwan and Taji, Behrouz},
     title = {Orbifold {Chern} classes inequalities and applications},
     journal = {Annales de l'Institut Fourier},
     pages = {2371--2410},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {73},
     number = {6},
     year = {2023},
     doi = {10.5802/aif.3571},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3571/}
}
TY  - JOUR
AU  - Rousseau, Erwan
AU  - Taji, Behrouz
TI  - Orbifold Chern classes inequalities and applications
JO  - Annales de l'Institut Fourier
PY  - 2023
SP  - 2371
EP  - 2410
VL  - 73
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3571/
DO  - 10.5802/aif.3571
LA  - en
ID  - AIF_2023__73_6_2371_0
ER  - 
%0 Journal Article
%A Rousseau, Erwan
%A Taji, Behrouz
%T Orbifold Chern classes inequalities and applications
%J Annales de l'Institut Fourier
%D 2023
%P 2371-2410
%V 73
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3571/
%R 10.5802/aif.3571
%G en
%F AIF_2023__73_6_2371_0
Rousseau, Erwan; Taji, Behrouz. Orbifold Chern classes inequalities and applications. Annales de l'Institut Fourier, Tome 73 (2023) no. 6, pp. 2371-2410. doi : 10.5802/aif.3571. https://aif.centre-mersenne.org/articles/10.5802/aif.3571/

[1] Birkar, Caucher; Cascini, Paolo; Hacon, Christopher D.; McKernan, James Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl

[2] Bogomolov, F. A. Holomorphic tensors and vector bundles on projective varieties, Math. USSR, Izv., Volume 13 (1979), pp. 499-555 | DOI | Zbl

[3] Boucksom, Sébastien Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4), Volume 37 (2004) no. 1, pp. 45-76 | DOI | MR | Zbl

[4] Boucksom, Sébastien; Demailly, Jean-Pierre; Păun, Mihai; Peternell, Thomas The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | MR | Zbl

[5] Campana, Frédéric Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | MR | Zbl

[6] Campana, Frédéric; Păun, Mihai Positivity properties of the bundle of logarithmic tensors on compact Kähler manifolds (2014) (http://arxiv.org/abs/1407.3431)

[7] Campana, Frédéric; Păun, Mihai Orbifold generic semi-positivity: an application to families of canonically polarized manifolds, Ann. Inst. Fourier, Volume 65 (2015) no. 2, pp. 835-861 | MR

[8] Campana, Frédéric; Păun, Mihai Foliations with positive slopes and birational stability of orbifold cotangent bundles (2016) (https://arxiv.org/abs/1508.02456)

[9] Campana, Frédéric; Peternell, Thomas Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. Soc. Math. France, Volume 139 (2011) no. 1, pp. 41-74 (With an appendix by Matei Toma) | DOI | MR | Zbl

[10] Claudon, Benoît; Kebekus, Stefan; Taji, Behrouz Generic positivity and applications to hyperbolicity of moduli spaces (2016) (http://arxiv.org/abs/1610.09832)

[11] Demailly, Jean-Pierre; Peternell, Thomas; Schneider, Michael Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR

[12] Fulton, William Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | DOI | MR | Zbl

[13] Greb, Daniel; Kebekus, Stefan; Peternell, Thomas Movable curves and semistable sheaves (2015) (To appear in Int Math Res Notices, http://arxiv.org/abs/1408.4308)

[14] Greb, Daniel; Kebekus, Stefan; Peternell, Thomas; Taji, Behrouz The Miyaoka–Yau inequality and uniformisation of canonical models (2015) (http://arxiv.org/abs/1511.08822)

[15] Grothendieck, Alexandre Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas (Seconde Partie), Inst. Hautes Études Sci. Publ. Math. (1965) no. 24, p. 231 | MR | Zbl

[16] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages | MR | Zbl

[17] Höring, Andreas On a conjecture of Beltrametti and Sommese, J. Algebraic Geom., Volume 21 (2012) no. 4, pp. 721-751 | DOI | MR | Zbl

[18] Huybrechts, Daniel; Lehn, Manfred The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010, xviii+325 pages | DOI | MR | Zbl

[19] Kawamata, Yujiro On the plurigenera of minimal algebraic 3-folds with K0, Math. Ann., Volume 275 (1986) no. 4, pp. 539-546 | DOI | MR | Zbl

[20] Keel, Sean; Matsuki, Kenji; McKernan, James Log abundance theorem for threefolds, Duke Math. J., Volume 75 (1994) no. 1, pp. 99-119

[21] Kollár, J.; Matsusaka, T. Riemann–Roch type inequalities, Amer. J. Math., Volume 105 (1983) no. 1, pp. 229-252 | DOI | MR | Zbl

[22] Flips and abundance for algebraic threefolds (Kollár, János, ed.), Astérisque, 211, Société Mathématique de France, Paris, 1992, pp. 1-258 (papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991) | MR | Zbl

[23] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, viii+254 pages | DOI | MR | Zbl

[24] Langer, Adrian Semistable sheaves in positive characteristic, Ann. Math. (2), Volume 159 (2004) no. 1, pp. 251-276 | DOI | MR | Zbl

[25] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004, xviii+387 pages | DOI | MR | Zbl

[26] Lazarsfeld, Robert Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 49, Springer-Verlag, Berlin, 2004, xviii+385 pages | DOI | MR | Zbl

[27] Lu, Steven Shin-Yi; Miyaoka, Yoichi Bounding codimension-one subvarieties and a general inequality between Chern numbers, Amer. J. Math., Volume 119 (1997) no. 3, pp. 487-502 | DOI | MR | Zbl

[28] Matsuki, Kenji Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, xxiv+478 pages | MR | Zbl

[29] Mehta, V. B.; Ramanathan, A. Semistable sheaves on projective varieties and their restriction to curves, Math. Ann., Volume 258 (1981/82) no. 3, pp. 213-224 | DOI | MR | Zbl

[30] Miyaoka, Yoichi The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 449-476 | DOI | MR | Zbl

[31] Nakayama, Noboru Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004, xiv+277 pages | MR | Zbl

[32] Siu, Yum-Tong Invariance of plurigenera, Invent. Math., Volume 134 (1998) no. 3, pp. 661-673 | DOI | MR | Zbl

Cité par Sources :