Dans cet article nous prouvons que pour une paire avec une variété de dimension et un diviseur de bord avec peu de singularités, si est mobile, alors la seconde classe de Chern orbifolde de est pseudoeffective. Cela généralise le résultat classique de Miyaoka sur la pseudoeffectivité de pour les modèles minimaux. Comme application, nous donnons une solution simple à la conjecture de non-annulation effective de Kawamata en dimension , où nous prouvons que , lorsque est nef et un diviseur de Cartier réduit, ample et effectif. De plus, nous étudions la conjecture de Lang–Vojta pour les sous-variétés de codimension et montrons que les variétés minimales de dimension de type général ont un nombre fini de sous-variétés de codimension Fano, Calabi–Yau ou abéliennes avec peu de singularités et dont les classes numériques appartiennent au cône mobile.
In this paper we prove that given a pair of a threefold and a boundary divisor with mild singularities, if is movable, then the orbifold second Chern class of is pseudoeffective. This generalizes the classical result of Miyaoka on the pseudoeffectivity of for minimal models. As an application, we give a simple solution to Kawamata’s effective non-vanishing conjecture in dimension , where we prove that , whenever is nef and is an ample, effective, reduced Cartier divisor. Furthermore, we study Lang–Vojta’s conjecture for codimension one subvarieties and prove that minimal threefolds of general type have only finitely many Fano, Calabi–Yau or Abelian subvarieties of codimension one that are mildly singular and whose numerical classes belong to the movable cone.
Révisé le :
Accepté le :
Publié le :
Keywords: Classification theory, Miyaoka–Yau inequality, Movable cone of divisors, Minimal Models, Effective non-vanishing, Lang–Vojta’s conjecture.
Mot clés : Théorie de la classification, Inégalité de Miyaoka–Yau, cône mobile de diviseurs, modèles minimaux, non-annulation effective, conjecture de Lang–Vojta.
Rousseau, Erwan 1 ; Taji, Behrouz 2
@article{AIF_2023__73_6_2371_0, author = {Rousseau, Erwan and Taji, Behrouz}, title = {Orbifold {Chern} classes inequalities and applications}, journal = {Annales de l'Institut Fourier}, pages = {2371--2410}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {6}, year = {2023}, doi = {10.5802/aif.3571}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3571/} }
TY - JOUR AU - Rousseau, Erwan AU - Taji, Behrouz TI - Orbifold Chern classes inequalities and applications JO - Annales de l'Institut Fourier PY - 2023 SP - 2371 EP - 2410 VL - 73 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3571/ DO - 10.5802/aif.3571 LA - en ID - AIF_2023__73_6_2371_0 ER -
%0 Journal Article %A Rousseau, Erwan %A Taji, Behrouz %T Orbifold Chern classes inequalities and applications %J Annales de l'Institut Fourier %D 2023 %P 2371-2410 %V 73 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3571/ %R 10.5802/aif.3571 %G en %F AIF_2023__73_6_2371_0
Rousseau, Erwan; Taji, Behrouz. Orbifold Chern classes inequalities and applications. Annales de l'Institut Fourier, Tome 73 (2023) no. 6, pp. 2371-2410. doi : 10.5802/aif.3571. https://aif.centre-mersenne.org/articles/10.5802/aif.3571/
[1] Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[2] Holomorphic tensors and vector bundles on projective varieties, Math. USSR, Izv., Volume 13 (1979), pp. 499-555 | DOI | Zbl
[3] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. École Norm. Sup. (4), Volume 37 (2004) no. 1, pp. 45-76 | DOI | MR | Zbl
[4] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | MR | Zbl
[5] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | MR | Zbl
[6] Positivity properties of the bundle of logarithmic tensors on compact Kähler manifolds (2014) (http://arxiv.org/abs/1407.3431)
[7] Orbifold generic semi-positivity: an application to families of canonically polarized manifolds, Ann. Inst. Fourier, Volume 65 (2015) no. 2, pp. 835-861 | MR
[8] Foliations with positive slopes and birational stability of orbifold cotangent bundles (2016) (https://arxiv.org/abs/1508.02456)
[9] Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. Soc. Math. France, Volume 139 (2011) no. 1, pp. 41-74 (With an appendix by Matei Toma) | DOI | MR | Zbl
[10] Generic positivity and applications to hyperbolicity of moduli spaces (2016) (http://arxiv.org/abs/1610.09832)
[11] Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR
[12] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2, Springer-Verlag, Berlin, 1998, xiv+470 pages | DOI | MR | Zbl
[13] Movable curves and semistable sheaves (2015) (To appear in Int Math Res Notices, http://arxiv.org/abs/1408.4308)
[14] The Miyaoka–Yau inequality and uniformisation of canonical models (2015) (http://arxiv.org/abs/1511.08822)
[15] Éléments de géométrie algébrique IV, Étude locale des schémas et des morphismes de schémas (Seconde Partie), Inst. Hautes Études Sci. Publ. Math. (1965) no. 24, p. 231 | MR | Zbl
[16] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages | MR | Zbl
[17] On a conjecture of Beltrametti and Sommese, J. Algebraic Geom., Volume 21 (2012) no. 4, pp. 721-751 | DOI | MR | Zbl
[18] The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010, xviii+325 pages | DOI | MR | Zbl
[19] On the plurigenera of minimal algebraic -folds with , Math. Ann., Volume 275 (1986) no. 4, pp. 539-546 | DOI | MR | Zbl
[20] Log abundance theorem for threefolds, Duke Math. J., Volume 75 (1994) no. 1, pp. 99-119
[21] Riemann–Roch type inequalities, Amer. J. Math., Volume 105 (1983) no. 1, pp. 229-252 | DOI | MR | Zbl
[22] Flips and abundance for algebraic threefolds (Kollár, János, ed.), Astérisque, 211, Société Mathématique de France, Paris, 1992, pp. 1-258 (papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991) | MR | Zbl
[23] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998, viii+254 pages | DOI | MR | Zbl
[24] Semistable sheaves in positive characteristic, Ann. Math. (2), Volume 159 (2004) no. 1, pp. 251-276 | DOI | MR | Zbl
[25] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 48, Springer-Verlag, Berlin, 2004, xviii+387 pages | DOI | MR | Zbl
[26] Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 49, Springer-Verlag, Berlin, 2004, xviii+385 pages | DOI | MR | Zbl
[27] Bounding codimension-one subvarieties and a general inequality between Chern numbers, Amer. J. Math., Volume 119 (1997) no. 3, pp. 487-502 | DOI | MR | Zbl
[28] Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002, xxiv+478 pages | MR | Zbl
[29] Semistable sheaves on projective varieties and their restriction to curves, Math. Ann., Volume 258 (1981/82) no. 3, pp. 213-224 | DOI | MR | Zbl
[30] The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 449-476 | DOI | MR | Zbl
[31] Zariski-decomposition and abundance, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004, xiv+277 pages | MR | Zbl
[32] Invariance of plurigenera, Invent. Math., Volume 134 (1998) no. 3, pp. 661-673 | DOI | MR | Zbl
Cité par Sources :