[Conjecture de type BSD précisée pour des formes modulaires]
Sous certaines hypothèses, on prouve la partie rang de la conjecture précisée de Mazur–Tate de type BSD. Plus concrètement, on prouve que le rang du groupe de Selmer d’une forme modulaire elliptique est inférieur ou égal à l’ordre des zéros des éléments de Mazur–Tate, qui sont des éléments de certains algèbres de groupes construits à partir de valeurs spéciales de la fonction associée. Notre résultat principal est considéré comme une généralisation de nos travaux antérieurs sur les courbes elliptiques.
Under some assumptions, we prove the rank-part of the Mazur–Tate refined conjecture of BSD type. More concretely, we prove that the rank of the Selmer group of an elliptic modular form is less than or equal to the order of zeros of Mazur–Tate elements, or modular elements, which are elements in certain group rings constructed from special values of the associated -function. Our main result is regarded as a generalization of our previous work on elliptic curves.
Révisé le :
Accepté le :
Publié le :
Keywords: Mazur–Tate refined conjectures, elliptic modular forms, $p$-adic $L$-functions
Mot clés : conjectures de Mazur-Tate précisée, formes modulaires elliptiques, fonctions $L$ $p$-adiques
Ota, Kazuto 1
@article{AIF_2023__73_3_1319_0, author = {Ota, Kazuto}, title = {On the rank-part of the {Mazur{\textendash}Tate} refined conjecture for higher weight modular forms}, journal = {Annales de l'Institut Fourier}, pages = {1319--1364}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {3}, year = {2023}, doi = {10.5802/aif.3557}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3557/} }
TY - JOUR AU - Ota, Kazuto TI - On the rank-part of the Mazur–Tate refined conjecture for higher weight modular forms JO - Annales de l'Institut Fourier PY - 2023 SP - 1319 EP - 1364 VL - 73 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3557/ DO - 10.5802/aif.3557 LA - en ID - AIF_2023__73_3_1319_0 ER -
%0 Journal Article %A Ota, Kazuto %T On the rank-part of the Mazur–Tate refined conjecture for higher weight modular forms %J Annales de l'Institut Fourier %D 2023 %P 1319-1364 %V 73 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3557/ %R 10.5802/aif.3557 %G en %F AIF_2023__73_3_1319_0
Ota, Kazuto. On the rank-part of the Mazur–Tate refined conjecture for higher weight modular forms. Annales de l'Institut Fourier, Tome 73 (2023) no. 3, pp. 1319-1364. doi : 10.5802/aif.3557. https://aif.centre-mersenne.org/articles/10.5802/aif.3557/
[1] Distributions -adiques associées aux séries de Hecke, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) (Astérisque), Volume 24-25, Société Mathématique de France, 1975, pp. 119-131 | Numdam | MR | Zbl
[2] On Iwasawa theory of crystalline representations, Duke Math. J., Volume 104 (2000) no. 2, pp. 211-267 | DOI | MR | Zbl
[3] Théorie d’Iwasawa des représentations cristallines. II, Comment. Math. Helv., Volume 83 (2008) no. 3, pp. 603-677 | DOI | MR | Zbl
[4] Bloch and Kato’s exponential map: three explicit formulas, Doc. Math., Volume Extra Vol. (2003), pp. 99-129 (Kazuya Kato’s fiftieth birthday) | MR | Zbl
[5] Limites de représentations cristallines, Compos. Math., Volume 140 (2004) no. 6, pp. 1473-1498 | DOI | MR | Zbl
[6] Construction of some families of 2-dimensional crystalline representations, Math. Ann., Volume 329 (2004) no. 2, pp. 365-377 | DOI | MR | Zbl
[7] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 333-400 | MR | Zbl
[8] A refined conjecture of Mazur-Tate type for Heegner points, Invent. Math., Volume 110 (1992) no. 1, pp. 123-146 | DOI | MR | Zbl
[9] Elliptic curves and big Galois representations, London Mathematical Society Lecture Note Series, 356, Cambridge University Press, 2008, x+281 pages | DOI | MR
[10] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005, xvi+436 pages | MR
[11] On the Birch-Swinnerton–Dyer quotients modulo squares, Ann. Math., Volume 172 (2010) no. 1, pp. 567-596 | DOI | MR | Zbl
[12] On Mazur–Tate type conjectures for quadratic imaginary fields and elliptic curves, Ph. D. Thesis, McGill University (2014)
[13] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Volume 295, Société Mathématique de France, 2004, pp. 117-290 | Numdam | MR | Zbl
[14] An anticyclotomic Mazur-Tate conjecture for modular forms, 2018 | arXiv
[15] Iwasawa theory for elliptic curves at supersingular primes, Invent. Math., Volume 152 (2003) no. 1, pp. 1-36 | DOI | MR | Zbl
[16] On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction. I, Invent. Math., Volume 149 (2002) no. 1, pp. 195-224 | DOI | MR | Zbl
[17] Refined Iwasawa theory for -adic representations and the structure of Selmer groups, Münster J. Math., Volume 7 (2014) no. 1, pp. 149-223 | MR | Zbl
[18] Iwasawa theory for modular forms at supersingular primes, Compos. Math., Volume 147 (2011) no. 3, pp. 803-838 | DOI | MR | Zbl
[19] Euler systems for Rankin-Selberg convolutions of modular forms, Ann. Math., Volume 180 (2014) no. 2, pp. 653-771 | DOI | MR | Zbl
[20] A refined Beilinson-Bloch conjecture for motives of modular forms, Trans. Am. Math. Soc., Volume 369 (2017) no. 10, pp. 7301-7342 | DOI | MR | Zbl
[21] Kolyvagin systems, Mem. Am. Math. Soc., Volume 168 (2004) no. 799, p. viii+96 | DOI | MR | Zbl
[22] Refined conjectures of the “Birch and Swinnerton–Dyer type”, Duke Math. J., Volume 54 (1987) no. 2, pp. 711-750 | DOI | MR | Zbl
[23] On -adic analogues of the conjectures of Birch and Swinnerton–Dyer, Invent. Math., Volume 84 (1986) no. 1, pp. 1-48 | DOI | MR | Zbl
[24] Kolyvagin’s method for Chow groups of Kuga-Sato varieties, Invent. Math., Volume 107 (1992) no. 1, pp. 99-125 | DOI | MR | Zbl
[25] Selmer complexes, Astérisque, 310, Société Mathématique de France, 2006, viii+559 pages | MR | Zbl
[26] Kato’s Euler system and the Mazur-Tate refined conjecture of BSD type, Am. J. Math., Volume 140 (2018) no. 2, pp. 495-542 | DOI | MR | Zbl
[27] Construction of a homomorphism concerning Euler systems for an elliptic curve, Tokyo J. Math., Volume 32 (2009) no. 1, pp. 253-278 | DOI | MR | Zbl
[28] Théorie d’Iwasawa des représentations -adiques sur un corps local, Invent. Math., Volume 115 (1994) no. 1, pp. 81-161 (with an appendix by Jean-Marc Fontaine) | DOI | MR | Zbl
[29] Théorie d’Iwasawa et loi explicite de réciprocité, Doc. Math., Volume 4 (1999), pp. 219-273 | MR | Zbl
[30] On -adic representations attached to modular forms. II, Glasg. Math. J., Volume 27 (1985), pp. 185-194 | DOI | MR | Zbl
[31] Euler systems (Hermann Weyl Lectures), Annals of Mathematics Studies, 147, Princeton University Press, 2000, xii+227 pages | DOI | MR
[32] Good reduction of abelian varieties, Ann. Math., Volume 88 (1968), pp. 492-517 | DOI | MR | Zbl
[33] Modular forms and Galois representations, Bull. Greek Math. Soc., Volume 46 (2002), pp. 63-78 | MR | Zbl
[34] Nonarchimedean measures associated with Dirichlet series, Mat. Sb., N. Ser., Volume 99(141) (1976) no. 2, p. 248-260, 296 | MR
Cité par Sources :