On construit les ensembles suivants : un ensemble parfait non de Dirichlet tel que tout sous-ensemble strict fermé soit un ensemble de Kronecker ; un ensemble de Kronecker faible qui n’est pas un ensemble de type ; un ensemble de Dirichlet dénombrable indépendant qui n’est pas un ensemble de Kronecker ; une famille de ensembles de Kronecker disjoints dont l’union est indépendante mais n’est pas un ensemble de Helson ; une famille dénombrable d’ensembles de Kronecker disjoints dont l’union est fermée et indépendante mais n’est pas un ensemble de Helson : un ensemble de Dirichlet indépendant et parfait qui n’est pas un ensemble de Helson.
We construct the following: a perfect non Dirichlet set every proper closed subset of which is Kronecker, A weak Kronecker set which is not an set; an independent countable Dirichlet set which is not Kronecker; a collection of -disjoint Kronecker sets whose union is independent but Helson ; A countable collection of disjoint Kronecker sets whose union is closed and independent but not Helson: a perfect independent Dirichlet set which is not Helson.
@article{AIF_1970__20_2_219_0, author = {Korner, Thomas-William}, title = {Some results on {Kronecker,} {Dirichlet} and {Helson} sets}, journal = {Annales de l'Institut Fourier}, pages = {219--324}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {20}, number = {2}, year = {1970}, doi = {10.5802/aif.355}, zbl = {0196.08403}, mrnumber = {44 #1995}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.355/} }
TY - JOUR AU - Korner, Thomas-William TI - Some results on Kronecker, Dirichlet and Helson sets JO - Annales de l'Institut Fourier PY - 1970 SP - 219 EP - 324 VL - 20 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.355/ DO - 10.5802/aif.355 LA - en ID - AIF_1970__20_2_219_0 ER -
%0 Journal Article %A Korner, Thomas-William %T Some results on Kronecker, Dirichlet and Helson sets %J Annales de l'Institut Fourier %D 1970 %P 219-324 %V 20 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.355/ %R 10.5802/aif.355 %G en %F AIF_1970__20_2_219_0
Korner, Thomas-William. Some results on Kronecker, Dirichlet and Helson sets. Annales de l'Institut Fourier, Tome 20 (1970) no. 2, pp. 219-324. doi : 10.5802/aif.355. https://aif.centre-mersenne.org/articles/10.5802/aif.355/
[1] Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France, t. 80, (1952), 254-317. | Numdam | MR | Zbl
,[2] A Treatise on Trigonometric Series, Vol. II., English translation Pergamon Press, Oxford (1964). | MR | Zbl
,[3] An Introduction to Diophantine Approximation, Cambridge University Press, (1965).
,[4] Introduction to the Theory of Numbers, 4th edition, Oxford University Press, (1959).
and ,[5] Über die Spaltung von Fourierreihen fast periodischer Funktionen, Studia Mathematica 19, (1960) 287-295. | MR | Zbl
and ,[6] Set Theory, English translation, Chelsea, New York (1957). | Zbl
,[7] Abstract Harmonic Analysis, Springer Verlag, Berlin (1963).
and ,[8] Approximation par des exponentielles imaginaires ; ensembles de Dirichlet et ensembles de Kronecker. Journal of Approximation Theory 2, (1969).
,[9] Ensembles Parfaits et Séries Trigonométriques, Hermann, Paris (1963). | MR | Zbl
and ,[10] An Introduction to Harmonic Analysis. John Wiley and Sons, New York, (1968). | MR | Zbl
,[11] A Functional Method for Linear Sets, Israel J. Math. 5, (1967). | MR | Zbl
,[12] Theory of Graphs, American Mathematical Society Colloquium Publications, Vol. XXXVIII, A.M.S.: Rhode Island (1962). | MR | Zbl
,[13] Fourier Analysis on Groups, John Wiley and Sons, New York, (1967).
,[14] Œuvres Mathématiques, Hermann, Paris (1967). | MR | Zbl
,[15] Some Examples of Sets with Linear Independence, Ark. Mat. 5, (1965), 207-214. | Zbl
,[16] Groupes des fonctions continues sur un compact, Studia Mathematica 35, (1970), 199-205. | Zbl
and ,[17] Groups of Continuous Functions in Harmonic Analysis Acta. Math, 125, (1970), 109-154. | MR | Zbl
,[18] Comptes Rendus Acad. Sci., Paris, 268, (1969), 954-957. | Zbl
,[19] A problem on Kronecker sets, Studia Mathematica 37, (1970), 95-101. | MR | Zbl
,Cité par Sources :