On démontre un théorème de représentation intégrale. Toute application continue d’un espace compact totalement discontinu dans l’ensemble des mesures de probabilité sur un espace métrique complet est la résolvante d’une mesure de probabilité sur l’espace des applications continues de dans .
An integral representation theorem is proved. Each continuous function from a totally disconnected compact space to the probability measures on a complete metric space is shown to be the resolvent of a probability measure on the space of continuous functions from to .
@article{AIF_1970__20_2_193_0, author = {Blumenthal, Robert M. and Corson, Harry H.}, title = {On continuous collections of measures}, journal = {Annales de l'Institut Fourier}, pages = {193--199}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {20}, number = {2}, year = {1970}, doi = {10.5802/aif.353}, zbl = {0195.06102}, mrnumber = {46 #4184}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.353/} }
TY - JOUR AU - Blumenthal, Robert M. AU - Corson, Harry H. TI - On continuous collections of measures JO - Annales de l'Institut Fourier PY - 1970 SP - 193 EP - 199 VL - 20 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.353/ DO - 10.5802/aif.353 LA - en ID - AIF_1970__20_2_193_0 ER -
%0 Journal Article %A Blumenthal, Robert M. %A Corson, Harry H. %T On continuous collections of measures %J Annales de l'Institut Fourier %D 1970 %P 193-199 %V 20 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.353/ %R 10.5802/aif.353 %G en %F AIF_1970__20_2_193_0
Blumenthal, Robert M.; Corson, Harry H. On continuous collections of measures. Annales de l'Institut Fourier, Tome 20 (1970) no. 2, pp. 193-199. doi : 10.5802/aif.353. https://aif.centre-mersenne.org/articles/10.5802/aif.353/
[1] Harmonic Analysis and the Theory of Probability, University of Cal. Press, Berkeley (1955). | MR | Zbl
,[2] Dimension Theory, Princeton University Press, Princeton, N.J. (1941). | JFM | MR | Zbl
and ,[3] Representation of Functions in C(X) by Means of Extreme Points, PAMS 18 (1967), 133-135. | MR | Zbl
,Cité par Sources :