Nous considérons deux applications des strates de différentielles de second type (tous les résidus sont égaux à zéro) avec des multiplicités fixes de zéros et de pôles :
Positivité : En genre , nous montrons que tous les diviseurs de obtenus par projection de ces strates sont -nef et donc conjecturalement nef. Nous calculons sa classe pour tous les genres lorsque la projection est divisorielle et n’oublie que des zéros simples. Dans ce cas, nous montrons que les projections en genre sont effectivement nef.
Espaces d’Hurwitz : Nous montrons que les espaces d’Hurwitz des revêtements de degré de genre au-dessus de dont les ramifications sont pures (un unique point de ramification au dessus d’un point de branchement) à l’exception d’au plus un point de ramification sont irréductibles s’il existe au moins points de ramification simples ou de points de ramification simples lorsque .
We consider two applications of the strata of differentials of the second kind (all residues equal to zero) with fixed multiplicities of zeros and poles:
Positivity: In genus we show any associated divisorial projection to is -nef and hence conjectured to be nef. We compute the class for all genus when the divisorial projection only forgets simple zeroes and show in these cases the genus projections are indeed nef.
Hurwitz spaces: We show the Hurwitz spaces of degree , genus covers of with pure branching (one ramified point over the branch point) at all but possibly one branch point are irreducible if there are at least simple branch points or simple branch points when .
Révisé le :
Accepté le :
Publié le :
Keywords: Riemann surfaces, Moduli spaces, Hurwitz spaces, Algebraic cycles, Birational geometry, Strata of differentials
Mot clés : surfaces de Riemann, espaces des modules, espaces d’Hurwitz, cycles algébriques, géométrie birationnelle, strates de différentielles
Mullane, Scott 1
@article{AIF_2022__72_4_1379_0, author = {Mullane, Scott}, title = {Strata of differentials of the second kind, positivity and irreducibility of certain {Hurwitz} spaces}, journal = {Annales de l'Institut Fourier}, pages = {1379--1416}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {4}, year = {2022}, doi = {10.5802/aif.3497}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3497/} }
TY - JOUR AU - Mullane, Scott TI - Strata of differentials of the second kind, positivity and irreducibility of certain Hurwitz spaces JO - Annales de l'Institut Fourier PY - 2022 SP - 1379 EP - 1416 VL - 72 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3497/ DO - 10.5802/aif.3497 LA - en ID - AIF_2022__72_4_1379_0 ER -
%0 Journal Article %A Mullane, Scott %T Strata of differentials of the second kind, positivity and irreducibility of certain Hurwitz spaces %J Annales de l'Institut Fourier %D 2022 %P 1379-1416 %V 72 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3497/ %R 10.5802/aif.3497 %G en %F AIF_2022__72_4_1379_0
Mullane, Scott. Strata of differentials of the second kind, positivity and irreducibility of certain Hurwitz spaces. Annales de l'Institut Fourier, Tome 72 (2022) no. 4, pp. 1379-1416. doi : 10.5802/aif.3497. https://aif.centre-mersenne.org/articles/10.5802/aif.3497/
[1] The Picard groups of the moduli spaces of curves, Topology, Volume 26 (1987), pp. 153-171 | DOI | MR | Zbl
[2] Compactification of strata of abelian differentials, Duke Math. J., Volume 167 (2018) no. 12, pp. 2347-2416 | MR | Zbl
[3] Connected components of the moduli space of meromorphic differentials, Comment. Math. Helv., Volume 90 (2015) no. 2, pp. 255-286 | DOI | MR | Zbl
[4] Hypertrees, Projections, and Moduli of Stable Rational Curves, J. Reine Angew. Math., Volume 675 (2013), pp. 121-180 | MR | Zbl
[5] Extremal effective divisors on , Math. Ann., Volume 359 (2014) no. 3, pp. 891-908 | DOI | MR | Zbl
[6] Zur Theorie der Riemann’schen Flächen, Math. Ann., Volume 6 (1873), pp. 216-230 | DOI | MR | Zbl
[7] Invariant and stationary measures for the action on Moduli space, Publ. Math., Inst. Hautes Étud. Sci., Volume 127 (2018) no. 1, pp. 95-324 | DOI | MR | Zbl
[8] Isolation, equidistribution, and orbit closures for the action on Moduli space, Ann. Math., Volume 182 (2015) no. 2, pp. 673-721 | DOI | MR | Zbl
[9] The moduli space of twisted canonical divisors, J. Inst. Math. Jussieu, Volume 17 (2018) no. 3, pp. 615-672 (with an appendix by F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine) | DOI | MR | Zbl
[10] Semiampleness criteria for divisors on (2014) (https://arxiv.org/abs/1407.7839)
[11] Splitting mixed Hodge structures over affine invariant manifolds, Ann. Math., Volume 183 (2016) no. 2, pp. 681-713 | DOI | MR | Zbl
[12] Différentielles à singularités prescrites (2017) (https://arxiv.org/abs/1705.03240)
[13] Towards the ample cone of , J. Am. Math. Soc., Volume 15 (2002) no. 2, pp. 273-294 | MR | Zbl
[14] The double ramification cycle and the theta divisor, Proc. Am. Math. Soc., Volume 142 (2014) no. 12, pp. 4053-4064 | DOI | MR | Zbl
[15] Moduli of curve, Graduate Texts in Mathematics, 187, Springer, 1998
[16] Intersection theory of moduli space of stable -pointed curves of genus zero, Trans. Am. Math. Soc., Volume 330 (1992) no. 2, pp. 545-574 | MR | Zbl
[17] Über Riemann’s Theorie de Algebraischen Functionen, Teubner, 1882
[18] Hurwitz action and finite quotients of braid groups, Braids (Santa Cruz, CA 1986) (Contemporary Mathematics), Volume 78, American Mathematical Society, 1988, pp. 299-325 | MR | Zbl
[19] The irreducibility of certain pure-cycle Hurwitz spaces, Am. J. Math., Volume 130 (2008) no. 6, pp. 1687-1708 | DOI | MR | Zbl
[20] Billiards and Teichmüller curves on Hilbert modular surfaces, J. Am. Math. Soc., Volume 16 (2003) no. 4, pp. 857-885 | DOI | Zbl
[21] Cubic curves and totally geodesic subvarieties of moduli space, Ann. Math., Volume 185 (2017) no. 3, pp. 957-990 | MR | Zbl
[22] On the effective cone of , Adv. Math., Volume 320 (2017), pp. 500-519 | DOI | MR | Zbl
[23] Effective divisors in from abelian differentials, Mich. Math. J., Volume 67 (2018) no. 4, pp. 839-889 | MR | Zbl
[24] On the effective cone of higher codimension cycles in , Math. Z., Volume 295 (2020) no. 1, pp. 265-288 | DOI | MR | Zbl
[25] The pullback of a theta divisor to , Math. Nachr., Volume 286 (2013) no. 11-12, pp. 1255-1266 | MR | Zbl
[26] Topology of 2-dimensional coverings and meromorphic functions on real and complex algebraic curves, Sel. Math. Sov., Volume 12 (1993) no. 3, pp. 251-291 | MR
[27] Extremal divisors on moduli spaces of rational curves with marked points, Mich. Math. J., Volume 65 (2016) no. 2, pp. 251-285 | MR | Zbl
[28] A nonboundary nef divisor on , Geom. Topol., Volume 17 (2013) no. 3, pp. 1317-1324 | DOI | MR | Zbl
[29] Gauss measures for transformations on the space of interval exchange maps, Ann. Math., Volume 115 (1982), pp. 201-242 | DOI | MR | Zbl
[30] A counterexample to Fulton’s conjecture on , J. Algebra, Volume 248 (2002) no. 2, pp. 780-784 | DOI | MR | Zbl
Cité par Sources :