An ε-regularity result with mean curvature control for Willmore immersions and application to minimal bubbling.
[Un résultat d’ε-régularité avec contrôle de la courbure moyenne pour les immersions de Willmore, application à la concentration minimale.]
Annales de l'Institut Fourier, Tome 72 (2022) no. 2, pp. 639-684.

Dans cet article, nous montrons une convergence pour des suites d’immersions de Willmore à bulles minimales simples. À cette fin, nous remplaçons le contrôle par la courbure totale dans la preuve de l’ε-régularité pour les immersions de Willmore par un contrôle de l’énergie Willmore locale.

In this paper, we prove a convergence result for sequences of Willmore immersions with simple minimal bubbles. To this end, we replace the total curvature control in the proof of the ε-regularity for Willmore immersions by a control of the local Willmore energy.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3464
Classification : 35J91, 53B25
Keywords: Willmore surfaces, $\varepsilon $-regularity, bubbling
Mot clés : surfaces de Willmore, $\varepsilon $-régularité, arbres de bulles

Marque, Nicolas 1

1 Institut Mathématique de Jussieu, Paris VII Bâtiment Sophie Germain Case 7052, 75205 Paris Cedex 13 (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2022__72_2_639_0,
     author = {Marque, Nicolas},
     title = {An $\varepsilon $-regularity result with mean curvature control for {Willmore} immersions and application to minimal bubbling.},
     journal = {Annales de l'Institut Fourier},
     pages = {639--684},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {2},
     year = {2022},
     doi = {10.5802/aif.3464},
     zbl = {07554666},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3464/}
}
TY  - JOUR
AU  - Marque, Nicolas
TI  - An $\varepsilon $-regularity result with mean curvature control for Willmore immersions and application to minimal bubbling.
JO  - Annales de l'Institut Fourier
PY  - 2022
SP  - 639
EP  - 684
VL  - 72
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3464/
DO  - 10.5802/aif.3464
LA  - en
ID  - AIF_2022__72_2_639_0
ER  - 
%0 Journal Article
%A Marque, Nicolas
%T An $\varepsilon $-regularity result with mean curvature control for Willmore immersions and application to minimal bubbling.
%J Annales de l'Institut Fourier
%D 2022
%P 639-684
%V 72
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3464/
%R 10.5802/aif.3464
%G en
%F AIF_2022__72_2_639_0
Marque, Nicolas. An $\varepsilon $-regularity result with mean curvature control for Willmore immersions and application to minimal bubbling.. Annales de l'Institut Fourier, Tome 72 (2022) no. 2, pp. 639-684. doi : 10.5802/aif.3464. https://aif.centre-mersenne.org/articles/10.5802/aif.3464/

[1] Adams, David A note on Riesz potentials, Duke Math. J., Volume 42 (1975) no. 4, pp. 765-778 | MR | Zbl

[2] Bernard, Yann Noether’s theorem and the Willmore functional, Adv. Calc. Var., Volume 9 (2016) no. 3, pp. 217-234 | DOI | MR | Zbl

[3] Bernard, Yann; Rivière, Tristan Energy quantization for Willmore surfaces and applications, Ann. Math., Volume 180 (2014) no. 1, pp. 87-136 | DOI | MR | Zbl

[4] Bethuel, Fabrice; Ghidaglia, Jean-Michel Improved regularity of solutions to elliptic equations involving Jacobians and applications, J. Math. Pures Appl., Volume 72 (1993) no. 5, pp. 441-474 | MR

[5] Blaschke, Wilhelm Vorlesungen über Integralgeometrie, Deutscher Verlag der Wissenschaften, 1955, viii+130 pages (3te Aufl) | MR

[6] Bourgain, Jean; Brezis, Haïm On the equation div Y=f and application to control of phases, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426 | DOI | MR | Zbl

[7] Brézis, Haïm; Coron, Jean-Michel Convergence of solutions of H-systems or how to blow bubbles, Arch. Ration. Mech. Anal., Volume 89 (1985) no. 1, pp. 21-56 | DOI | MR | Zbl

[8] Evans, Lawrence C. Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxii+749 pages | DOI | MR

[9] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages (Reprint of the 1998 edition) | DOI | MR

[10] Hélein, Frédéric Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Mathematics, 150, Cambridge University Press, 2002, xxvi+264 pages (Translated from the 1996 French original, With a foreword by James Eells) | DOI | MR

[11] Iwaniec, Tadeusz; Martin, Gaven Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, Clarendon Press, 2001, xvi+552 pages | MR

[12] Kuwert, Ernst; Schätzle, Reiner The Willmore flow with small initial energy, J. Differ. Geom., Volume 57 (2001) no. 3, pp. 409-441 | MR | Zbl

[13] Kuwert, Ernst; Schätzle, Reiner The Willmore flow with small initial energy, J. Differ. Geom., Volume 57 (2001) no. 3, pp. 409-441 | MR | Zbl

[14] Kuwert, Ernst; Schätzle, Reiner Removability of point singularities of Willmore surfaces, Ann. Math., Volume 160 (2004) no. 1, pp. 315-357 | DOI | MR | Zbl

[15] Laurain, Paul Asymptotic analysis for surfaces with large constant mean curvature and free boundaries, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 1, pp. 109-129 | DOI | Numdam | MR | Zbl

[16] Laurain, Paul; Rivière, Tristan Energy quantization of Willmore surfaces at the boundary of the moduli space, Duke Math. J., Volume 167 (2018) no. 11, pp. 2073-2124 | DOI | MR | Zbl

[17] Laurain, Paul; Rivière, Tristan Optimal estimate for the gradient of Green’s function on degenerating surfaces and applications, Commun. Anal. Geom., Volume 26 (2018) no. 4, pp. 887-913 | DOI | MR | Zbl

[18] Li, Yuxiang Some remarks on Willmore surfaces embedded in 3 , J. Geom. Anal., Volume 26 (2016) no. 3, pp. 2411-2424 | DOI | MR | Zbl

[19] Marque, Nicolas Minimal Bubbling for Willmore Surfaces, Int. Math. Res. Not., Volume 2021 (2021) no. 23, pp. 17708-17765 (rnaa079) | DOI | MR | Zbl

[20] Müller, Stefan; Šverák, Vladimír On surfaces of finite total curvature, J. Differ. Geom., Volume 42 (1995) no. 2, pp. 229-258 | MR | Zbl

[21] Rivière, Tristan Conservation laws for conformally invariant variational problems, Invent. Math., Volume 168 (2007) no. 1, pp. 1-22 | DOI | MR | Zbl

[22] Rivière, Tristan Analysis aspects of Willmore surfaces, Invent. Math., Volume 174 (2008) no. 1, pp. 1-45 | DOI | MR | Zbl

[23] Rivière, Tristan Weak immersions of surfaces with L 2 -bounded second fundamental form, Geometric analysis (IAS/Park City Mathematics Series), Volume 22, American Mathematical Society, 2016, pp. 303-384 | MR | Zbl

[24] Wente, Henry An existence theorem for surfaces of constant mean curvature, Bull. Am. Math. Soc., Volume 77 (1971), pp. 200-202 | DOI | MR

[25] Willmore, Thomas J. Riemannian geometry, Oxford Science Publications, Clarendon Press, 1993, xii+318 pages | MR

Cité par Sources :