[Un résultat d’-régularité avec contrôle de la courbure moyenne pour les immersions de Willmore, application à la concentration minimale.]
Dans cet article, nous montrons une convergence pour des suites d’immersions de Willmore à bulles minimales simples. À cette fin, nous remplaçons le contrôle par la courbure totale dans la preuve de l’-régularité pour les immersions de Willmore par un contrôle de l’énergie Willmore locale.
In this paper, we prove a convergence result for sequences of Willmore immersions with simple minimal bubbles. To this end, we replace the total curvature control in the proof of the -regularity for Willmore immersions by a control of the local Willmore energy.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3464
Keywords: Willmore surfaces, $\varepsilon $-regularity, bubbling
Mot clés : surfaces de Willmore, $\varepsilon $-régularité, arbres de bulles
Marque, Nicolas 1
@article{AIF_2022__72_2_639_0, author = {Marque, Nicolas}, title = {An $\varepsilon $-regularity result with mean curvature control for {Willmore} immersions and application to minimal bubbling.}, journal = {Annales de l'Institut Fourier}, pages = {639--684}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {2}, year = {2022}, doi = {10.5802/aif.3464}, zbl = {07554666}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3464/} }
TY - JOUR AU - Marque, Nicolas TI - An $\varepsilon $-regularity result with mean curvature control for Willmore immersions and application to minimal bubbling. JO - Annales de l'Institut Fourier PY - 2022 SP - 639 EP - 684 VL - 72 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3464/ DO - 10.5802/aif.3464 LA - en ID - AIF_2022__72_2_639_0 ER -
%0 Journal Article %A Marque, Nicolas %T An $\varepsilon $-regularity result with mean curvature control for Willmore immersions and application to minimal bubbling. %J Annales de l'Institut Fourier %D 2022 %P 639-684 %V 72 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3464/ %R 10.5802/aif.3464 %G en %F AIF_2022__72_2_639_0
Marque, Nicolas. An $\varepsilon $-regularity result with mean curvature control for Willmore immersions and application to minimal bubbling.. Annales de l'Institut Fourier, Tome 72 (2022) no. 2, pp. 639-684. doi : 10.5802/aif.3464. https://aif.centre-mersenne.org/articles/10.5802/aif.3464/
[1] A note on Riesz potentials, Duke Math. J., Volume 42 (1975) no. 4, pp. 765-778 | MR | Zbl
[2] Noether’s theorem and the Willmore functional, Adv. Calc. Var., Volume 9 (2016) no. 3, pp. 217-234 | DOI | MR | Zbl
[3] Energy quantization for Willmore surfaces and applications, Ann. Math., Volume 180 (2014) no. 1, pp. 87-136 | DOI | MR | Zbl
[4] Improved regularity of solutions to elliptic equations involving Jacobians and applications, J. Math. Pures Appl., Volume 72 (1993) no. 5, pp. 441-474 | MR
[5] Vorlesungen über Integralgeometrie, Deutscher Verlag der Wissenschaften, 1955, viii+130 pages (3te Aufl) | MR
[6] On the equation and application to control of phases, J. Am. Math. Soc., Volume 16 (2003) no. 2, pp. 393-426 | DOI | MR | Zbl
[7] Convergence of solutions of -systems or how to blow bubbles, Arch. Ration. Mech. Anal., Volume 89 (1985) no. 1, pp. 21-56 | DOI | MR | Zbl
[8] Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxii+749 pages | DOI | MR
[9] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages (Reprint of the 1998 edition) | DOI | MR
[10] Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Mathematics, 150, Cambridge University Press, 2002, xxvi+264 pages (Translated from the 1996 French original, With a foreword by James Eells) | DOI | MR
[11] Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, Clarendon Press, 2001, xvi+552 pages | MR
[12] The Willmore flow with small initial energy, J. Differ. Geom., Volume 57 (2001) no. 3, pp. 409-441 | MR | Zbl
[13] The Willmore flow with small initial energy, J. Differ. Geom., Volume 57 (2001) no. 3, pp. 409-441 | MR | Zbl
[14] Removability of point singularities of Willmore surfaces, Ann. Math., Volume 160 (2004) no. 1, pp. 315-357 | DOI | MR | Zbl
[15] Asymptotic analysis for surfaces with large constant mean curvature and free boundaries, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 1, pp. 109-129 | DOI | Numdam | MR | Zbl
[16] Energy quantization of Willmore surfaces at the boundary of the moduli space, Duke Math. J., Volume 167 (2018) no. 11, pp. 2073-2124 | DOI | MR | Zbl
[17] Optimal estimate for the gradient of Green’s function on degenerating surfaces and applications, Commun. Anal. Geom., Volume 26 (2018) no. 4, pp. 887-913 | DOI | MR | Zbl
[18] Some remarks on Willmore surfaces embedded in , J. Geom. Anal., Volume 26 (2016) no. 3, pp. 2411-2424 | DOI | MR | Zbl
[19] Minimal Bubbling for Willmore Surfaces, Int. Math. Res. Not., Volume 2021 (2021) no. 23, pp. 17708-17765 (rnaa079) | DOI | MR | Zbl
[20] On surfaces of finite total curvature, J. Differ. Geom., Volume 42 (1995) no. 2, pp. 229-258 | MR | Zbl
[21] Conservation laws for conformally invariant variational problems, Invent. Math., Volume 168 (2007) no. 1, pp. 1-22 | DOI | MR | Zbl
[22] Analysis aspects of Willmore surfaces, Invent. Math., Volume 174 (2008) no. 1, pp. 1-45 | DOI | MR | Zbl
[23] Weak immersions of surfaces with -bounded second fundamental form, Geometric analysis (IAS/Park City Mathematics Series), Volume 22, American Mathematical Society, 2016, pp. 303-384 | MR | Zbl
[24] An existence theorem for surfaces of constant mean curvature, Bull. Am. Math. Soc., Volume 77 (1971), pp. 200-202 | DOI | MR
[25] Riemannian geometry, Oxford Science Publications, Clarendon Press, 1993, xii+318 pages | MR
Cité par Sources :