On étudie l’équation des ondes non linéaire cubique (NLW) en dimension 3 avec une donnée initiale aléatoire en-dessous de . En considérant le développement d’ordre 2 en termes de la solution aléatoire linéaire, on prouve le caractère presque sûrement localement bien posé de NLW renormalisée dans les espaces de Sobolev d’indices négatifs. On montre aussi un nouveau résultat d’instabilité pour l’équation NLW cubique défocalisante sans renormalisation dans les espaces de Sobolev d’indices négatifs, dans l’esprit du caractère non trivial dans l’étude des équations aux dérivées partielles stochastiques. Plus précisément, en étudiant NLW non renormalisée avec des données initiales régulières déterministes plus une donnée initiale aléatoire tronquée, on montre que, dès que la troncature est supprimée, les solutions tendent vers au sens des distributions pour toute donnée initiale déterministe.
We study the three-dimensional cubic nonlinear wave equation (NLW) with random initial data below . By considering the second order expansion in terms of the random linear solution, we prove almost sure local well-posedness of the renormalized NLW in negative Sobolev spaces. We also prove a new instability result for the defocusing cubic NLW without renormalization in negative Sobolev spaces, which is in the spirit of the so-called triviality in the study of stochastic partial differential equations. More precisely, by studying (un-renormalized) NLW with given smooth deterministic initial data plus a certain truncated random initial data, we show that, as the truncation is removed, the solutions converge to in the distributional sense for any deterministic initial data.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3454
Keywords: nonlinear wave equation, Gaussian measure, local well-posedness, renormalization, triviality
Mot clés : équation des ondes non linéaire, mesures gaussiennes, caractère bien posé, renormalisation, trivialité
Oh, Tadahiro 1 ; Pocovnicu, Oana 2 ; Tzvetkov, Nikolay 3
@article{AIF_2022__72_2_771_0, author = {Oh, Tadahiro and Pocovnicu, Oana and Tzvetkov, Nikolay}, title = {Probabilistic local {Cauchy} theory of the cubic nonlinear wave equation in negative {Sobolev} spaces}, journal = {Annales de l'Institut Fourier}, pages = {771--830}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {2}, year = {2022}, doi = {10.5802/aif.3454}, zbl = {07554669}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3454/} }
TY - JOUR AU - Oh, Tadahiro AU - Pocovnicu, Oana AU - Tzvetkov, Nikolay TI - Probabilistic local Cauchy theory of the cubic nonlinear wave equation in negative Sobolev spaces JO - Annales de l'Institut Fourier PY - 2022 SP - 771 EP - 830 VL - 72 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3454/ DO - 10.5802/aif.3454 LA - en ID - AIF_2022__72_2_771_0 ER -
%0 Journal Article %A Oh, Tadahiro %A Pocovnicu, Oana %A Tzvetkov, Nikolay %T Probabilistic local Cauchy theory of the cubic nonlinear wave equation in negative Sobolev spaces %J Annales de l'Institut Fourier %D 2022 %P 771-830 %V 72 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3454/ %R 10.5802/aif.3454 %G en %F AIF_2022__72_2_771_0
Oh, Tadahiro; Pocovnicu, Oana; Tzvetkov, Nikolay. Probabilistic local Cauchy theory of the cubic nonlinear wave equation in negative Sobolev spaces. Annales de l'Institut Fourier, Tome 72 (2022) no. 2, pp. 771-830. doi : 10.5802/aif.3454. https://aif.centre-mersenne.org/articles/10.5802/aif.3454/
[1] Trivial solutions for a nonlinear two-space-dimensional wave equation perturbed by space-time white noise, Stochastics Stochastics Rep., Volume 56 (1996) no. 1-2, pp. 127-160 | DOI | Zbl
[2] A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise, Probab. Theory Relat. Fields, Volume 121 (2001) no. 3, pp. 319-366 | DOI | MR | Zbl
[3] The invariant measure and the flow associated to the -quantum field model (2021) (https://arxiv.org/abs/1711.07108, to appear in Annali della Scuola Normale Superiore di Pisa. Classe di Scienze)
[4] Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011 | DOI | Zbl
[5] Stochastic processes, Cambridge Series in Statistical and Probabilistic Mathematics, 33, Cambridge University Press, 2011 | DOI | Zbl
[6] Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in harmonic analysis. Volume 4. The February Fourier talks at the Norbert Wiener Center, College Park, MD, USA, 2002–2013 (Applied and Numerical Harmonic Analysis), Birkhäuser/Springer, 2015, pp. 3-25 | Zbl
[7] Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on , Trans. Amer. Math. Soc., Volume 6 (2019), pp. 114-160 | DOI | Zbl
[8] Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér., Volume 14 (1981), pp. 209-246 | DOI | Numdam | Zbl
[9] Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl
[10] Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlinearity II: Dynamics (2020) (https://arxiv.org/abs/2009.04616)
[11] Global infinite energy solutions for the cubic wave equation, Bull. Soc. Math. Fr., Volume 143 (2015) no. 2, pp. 301-313 | DOI | MR | Zbl
[12] Remarks on the Gibbs measures for nonlinear dispersive equations, Ann. Fac. Sci. Toulouse, Math., Volume 27 (2018) no. 3, pp. 527-597 | DOI | Numdam | MR | Zbl
[13] Random data Cauchy theory for supercritical wave equations I. Local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | MR | Zbl
[14] Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 1-30 | DOI | MR | Zbl
[15] Paracontrolled distributions and the 3-dimensional stochastic quantization equation, Ann. Probab., Volume 46 (2018) no. 5, pp. 2621-2679 | MR | Zbl
[16] A refined well-posedness result for the modified KdV equation in the Fourier–Lebesgue spaces, J. Dyn. Differ. Equations (2021) | DOI
[17] A remark on the well-posedness of the modified KdV equation in the Fourier–Lebesgue spaces, Discrete Contin. Dyn. Syst., Volume 41 (2021) no. 8, pp. 3915-3950 | DOI | MR | Zbl
[18] Ill-posedness for nonlinear Schrödinger and wave equations (2003) (https://arxiv.org/abs/0311048)
[19] Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett., Volume 9 (2002) no. 5-6, pp. 659-682 | DOI | Zbl
[20] Strong solutions to the stochastic quantization equations, Ann. Probab., Volume 31 (2003) no. 4, pp. 1900-1916 | MR | Zbl
[21] Random tensors, propagation of randomness, and nonlinear dispersive equations (2020) (https://arxiv.org/abs/2006.09285)
[22] Renormalized powers of Ornstein–Uhlenbeck processes and well-posedness of stochastic Ginzburg–Landau equations, Nonlinear Anal., Theory Methods Appl., Volume 142 (2016), pp. 152-193 | DOI | MR | Zbl
[23] A remark on norm inflation for nonlinear wave equations, Dyn. Partial Differ. Equ., Volume 17 (2020) no. 4, pp. 361-381 | DOI | MR | Zbl
[24] A course on rough paths. With an introduction to regularity structures, Universitext, Springer, 2014 | DOI | Zbl
[25] Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., Volume 133 (1995) no. 1, pp. 50-68 | DOI | MR | Zbl
[26] Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015), e6, 75 pages | MR | Zbl
[27] Renormalization of the two-dimensional stochastic nonlinear wave equation, Trans. Am. Math. Soc., Volume 370 (2018) no. 10, pp. 7335-7359 | DOI | MR | Zbl
[28] Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity (2021) (https://arxiv.org/abs/1811.07808, to appear in Journal of the European Mathematical Society)
[29] Global dynamics for the two-dimensional stochastic nonlinear wave equations, Int. Math. Res. Not. (2021), rnab084 | DOI
[30] Non-existence of solutions for the periodic cubic nonlinear Schrödinger equation below , Int. Math. Res. Not., Volume 2018 (2018) no. 6, pp. 1656-1729 | Zbl
[31] A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | MR | Zbl
[32] Discretisations of rough stochastic PDEs, Ann. Probab., Volume 46 (2018) no. 3, pp. 1651-1709 | MR | Zbl
[33] Triviality of the 2D stochastic Allen–Cahn equation, Electron. J. Probab., Volume 17 (2012), 39, 14 pages | MR | Zbl
[34] The dynamical sine-Gordon model, Commun. Math. Phys., Volume 341 (2016) no. 3, pp. 933-989 | DOI | MR | Zbl
[35] Endpoint Strichartz estimates, Am. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | DOI | MR | Zbl
[36] On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Volume 130 (1995) no. 2, pp. 357-426 | DOI | MR | Zbl
[37] Differential equations driven by rough signals, Rev. Mat. Iberoam., Volume 14 (1998) no. 2, pp. 215-310 | DOI | MR | Zbl
[38] Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Commun. Math. Phys., Volume 168 (1995) no. 3, pp. 479-491 Erratum: Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger, Comm. Math. Phys. (1995), no. 3, p. 675 | DOI | Zbl
[39] The dynamic model comes down from infinity, Commun. Math. Phys., Volume 356 (2017) no. 3, pp. 673-753 | DOI | MR | Zbl
[40] Global well-posedness of the dynamic model in the plane, Ann. Probab., Volume 45 (2017) no. 4, pp. 2398-2476 | MR | Zbl
[41] Construction of diagrams for pedestrians, From particle systems to partial differential equations. PSPDE IV, Braga, Portugal, December 16–18, 2015 (Gonçalves, Patrícia, ed.) (Springer Proceedings in Mathematics & Statistics), Volume 209, Springer, 2017 | MR | Zbl
[42] A quartic interaction in two dimensions, Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965) (1966), pp. 69-73
[43] Comparing the stochastic nonlinear wave and heat equations: a case study, Electron. J. Probab., Volume 26 (2021), 9 | DOI | MR | Zbl
[44] A remark on triviality for the two-dimensional stochastic nonlinear wave equation, Stochastic Processes Appl., Volume 130 (2020) no. 9, pp. 5838-5864 | MR | Zbl
[45] Uniqueness and non-uniqueness of the Gaussian free field evolution under the two-dimensional Wick ordered cubic wave equation (preprint)
[46] On the two-dimensional hyperbolic stochastic sine-Gordon equation, Stoch. Partial Differ. Equ., Anal. Comput., Volume 9 (2021) no. 1, pp. 1-32 | DOI | MR | Zbl
[47] Invariant Gibbs measures for the 2- defocusing nonlinear wave equations, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 1, pp. 1-26 | MR | Zbl
[48] Solving the 4NLS with white noise initial data, Forum Math. Sigma, Volume 8 (2020), e48 | DOI | MR | Zbl
[49] Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces, Forum Math. Sigma, Volume 6 (2018), e5, 80 pages | MR | Zbl
[50] The Euclidean (quantum) field theory, Princeton Series in Physics, Princeton University Press, 1974 | Zbl
[51] Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity, Volume 23 (2010) no. 11, pp. 2771-2791 | DOI | Zbl
[52] Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation, Probab. Theory Relat. Fields, Volume 146 (2010) no. 3-4, pp. 481-514 | DOI | MR | Zbl
[53] Random data wave equations, Singular random dynamics (Lecture Notes in Mathematics), Volume 2253, Springer, 2019, pp. 221-313 | DOI | MR
[54] Generic ill-posedness for wave equation of power type on 3D torus (2015) (https://arxiv.org/abs/1507.07179)
Cité par Sources :