On introduit une nouvelle randomisation des données initiales pour l’équation des ondes, telle que les solutions satisfont les mêmes estimations de Strichartz que dans le cadre radial, au dépit de leur caractère non-radial. Nous utilisons ces estimations pour montrer que certaines équations modèles similaires aux applications d’ondes sont bien-posées pour des données initiales surcritiques.
We introduce a novel data randomisation for the free wave equation which leads to the same range of Strichartz estimates as for radial data, albeit in a non-radial context. We then use these estimates to establish global well-posedness for a wave maps type nonlinear wave equation for certain supercritical data, provided the data are suitably small and randomised.
Accepté le :
Première publication :
Publié le :
Keywords: wave equation, Strichartz estimates, randomised data
Mot clés : équation d’ondes, estimations de Strichartz, données randomisées
Burq, Nicolas 1 ; Krieger, Joachim 2
@article{AIF_2021__71_5_1929_0, author = {Burq, Nicolas and Krieger, Joachim}, title = {Randomization improved {Strichartz} estimates and global well-posedness for supercritical data}, journal = {Annales de l'Institut Fourier}, pages = {1929--1961}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {5}, year = {2021}, doi = {10.5802/aif.3448}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3448/} }
TY - JOUR AU - Burq, Nicolas AU - Krieger, Joachim TI - Randomization improved Strichartz estimates and global well-posedness for supercritical data JO - Annales de l'Institut Fourier PY - 2021 SP - 1929 EP - 1961 VL - 71 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3448/ DO - 10.5802/aif.3448 LA - en ID - AIF_2021__71_5_1929_0 ER -
%0 Journal Article %A Burq, Nicolas %A Krieger, Joachim %T Randomization improved Strichartz estimates and global well-posedness for supercritical data %J Annales de l'Institut Fourier %D 2021 %P 1929-1961 %V 71 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3448/ %R 10.5802/aif.3448 %G en %F AIF_2021__71_5_1929_0
Burq, Nicolas; Krieger, Joachim. Randomization improved Strichartz estimates and global well-posedness for supercritical data. Annales de l'Institut Fourier, Tome 71 (2021) no. 5, pp. 1929-1961. doi : 10.5802/aif.3448. https://aif.centre-mersenne.org/articles/10.5802/aif.3448/
[1] Almost sure local well-posedness for a derivative nonlinear wave equation (2018) (https://arxiv.org/abs/1809.00220)
[2] Almost sure scattering for the energy critical nonlinear wave equation (2018) (https://arxiv.org/abs/1812.10187)
[3] Injections de Sobolev probabilistes et applications, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013) no. 6, pp. 917-962 | DOI | Numdam | MR | Zbl
[4] Probabilistic Sobolev embeddings, applications to eigenfunctions estimates, Geometric and spectral analysis (Contemporary Mathematics), Volume 630, American Mathematical Society, 2014, pp. 307-318 | DOI | MR | Zbl
[5] Random data Cauchy theory for supercritical wave equations. I. Local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | MR | Zbl
[6] Almost sure boundedness of iterates for derivative nonlinear wave equations (2017) (https://arxiv.org/abs/1710.09346)
[7] Space-time estimates for null forms and the local existence theorem, Commun. Pure Appl. Math., Volume 46 (1993) no. 9, pp. 1221-1268 | DOI | MR
[8] On the optimal local regularity for Yang–Mills equations in , J. Am. Math. Soc., Volume 12 (1999) no. 1, pp. 93-116 | DOI | MR | Zbl
[9] Concentration compactness for critical wave maps, EMS Monographs in Mathematics, European Mathematical Society, 2012, vi+484 pages | DOI | MR
[10] On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on , New York J. Math., Volume 22 (2016), pp. 209-227 | MR | Zbl
[11] Random data final-state problem for the mass-subcritical NLS in , Proc. Am. Math. Soc., Volume 147 (2019) no. 1, pp. 339-350 | DOI | MR | Zbl
[12] Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator, Anal. PDE, Volume 7 (2014) no. 4, pp. 997-1026 | DOI | MR | Zbl
[13] Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971, x+297 pages | MR
[14] Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not. (2005) no. 4, pp. 187-231 (with an appendix by Igor Rodnianski) | DOI | MR | Zbl
[15] Global regularity of wave maps. II. Small energy in two dimensions, Commun. Math. Phys., Volume 224 (2001) no. 2, pp. 443-544 | DOI | MR | Zbl
[16] On global existence and scattering for the wave maps equation, Am. J. Math., Volume 123 (2001) no. 1, pp. 37-77 | DOI | MR | Zbl
[17] Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Relat. Fields, Volume 146 (2010) no. 3-4, pp. 481-514 | DOI | MR | Zbl
Cité par Sources :