Sur la base de nos travaux antérieurs, nous développons une théorie stationnaire de la diffusion pour l’opérateur de Schrödinger sur une variété possédant une fonction d’échappement. Une classe particulière d’exemples sont les variétés à extrémités euclidiennes et/ou hyperboliques. La diffusion par des obstacles, éventuellement non lisses et/ou non bornés d’une certaine manière, est incluse dans la théorie. Nous développons la théorie en grande partie selon les idées classiques de Jäger, Saitō et Constantin, et dérivons en particulier les asymptotiques WKB des fonctions propres généralisées minimales. Comme application, nous prouvons une conjecture de Hempel, Post et Weder sur les transmissions transversales sous sa forme naturelle et forte dans le cadre de notre théorie.
Based on our previous work we develop a stationary scattering theory for the Schrödinger operator on a manifold possessing an escape function. A particular class of examples are manifolds with Euclidean and/or hyperbolic ends. Scattering by obstacles, possibly non-smooth and/or unbounded in a certain manner, is included in the theory. We develop the theory largely along the classical lines of Jäger, Saitō and Constantin, and derive in particular WKB-asymptotics of minimal generalized eigenfunctions. As an application we prove a conjecture of Hempel, Post and Weder on cross-ends transmissions in its natural and strong form within the framework of our theory.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: scattering theory, Schrödinger operator, manifolds
Mot clés : théorie de la diffusion, l’opérateur de Schrödinger, variétés
Ito, Kenichi 1 ; Skibsted, Erik 2
@article{AIF_2021__71_3_1065_0, author = {Ito, Kenichi and Skibsted, Erik}, title = {Stationary scattering theory on manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1065--1119}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {3}, year = {2021}, doi = {10.5802/aif.3417}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3417/} }
TY - JOUR AU - Ito, Kenichi AU - Skibsted, Erik TI - Stationary scattering theory on manifolds JO - Annales de l'Institut Fourier PY - 2021 SP - 1065 EP - 1119 VL - 71 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3417/ DO - 10.5802/aif.3417 LA - en ID - AIF_2021__71_3_1065_0 ER -
%0 Journal Article %A Ito, Kenichi %A Skibsted, Erik %T Stationary scattering theory on manifolds %J Annales de l'Institut Fourier %D 2021 %P 1065-1119 %V 71 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3417/ %R 10.5802/aif.3417 %G en %F AIF_2021__71_3_1065_0
Ito, Kenichi; Skibsted, Erik. Stationary scattering theory on manifolds. Annales de l'Institut Fourier, Tome 71 (2021) no. 3, pp. 1065-1119. doi : 10.5802/aif.3417. https://aif.centre-mersenne.org/articles/10.5802/aif.3417/
[1] Generalized Fourier transform for Schrödinger operators with potentials of order zero, J. Funct. Anal., Volume 167 (1999) no. 2, pp. 345-369 | DOI | MR | Zbl
[2] Asymptotic properties of solutions of differential equations with simple characteristics, J. Anal. Math., Volume 30 (1976), pp. 1-38 | DOI | MR | Zbl
[3] Riemannian geometry, Cambridge Studies in Advanced Mathematics, 98, Cambridge University Press, 2006, xvi+471 pages (A modern introduction) | DOI | MR
[4] Scattering for Schrödinger operators in a class of domains with noncompact boundaries, J. Funct. Anal., Volume 44 (1981) no. 1, pp. 87-119 | DOI | MR
[5] Spectrum of the Laplacian on asymptotically Euclidean spaces, Mich. Math. J., Volume 46 (1999) no. 1, pp. 101-111 | DOI | MR | Zbl
[6] A report on harmonic maps, Bull. Lond. Math. Soc., Volume 10 (1978) no. 1, pp. 1-68 | DOI | MR
[7] Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998, xviii+662 pages | MR
[8] On solutions of the Schrödinger equation with radiation conditions at infinity: the long-range case, Ann. Inst. Fourier, Volume 49 (1999) no. 5, pp. 1581-1602 | DOI | Numdam | MR | Zbl
[9] On open scattering channels for manifolds with ends, J. Funct. Anal., Volume 266 (2014) no. 9, pp. 5526-5583 | DOI | MR | Zbl
[10] Time-dependent approach to radiation conditions, Duke Math. J., Volume 64 (1991) no. 1, pp. 119-147 | DOI | MR | Zbl
[11] Free channel Fourier transform in the long-range -body problem, J. Anal. Math., Volume 65 (1995), pp. 297-332 | DOI | MR | Zbl
[12] The analysis of linear partial differential operators. II–IV, Grundlehren der Mathematischen Wissenschaften, Springer, 1983–85
[13] The principle of limit absorption and scattering by noncompact obstacles. I, Izv. Vyssh. Uchebn. Zaved., Mat. (1984) no. 1, pp. 46-55 | MR
[14] The principle of limit absorption and scattering by noncompact obstacles. II, Izv. Vyssh. Uchebn. Zaved., Mat. (1984) no. 2, pp. 27-34 | MR
[15] Scattering by unbounded obstacles for second-order elliptic operators, Tr. Mat. Inst. Steklova, Volume 179 (1988), pp. 80-101 Translated in Proc. Steklov Inst. Math. 1 (1989), no. 2, p. 85–107 | MR | Zbl
[16] Eikonal equations and spectral representations for long-range Schrödinger Hamiltonians, J. Math. Kyoto Univ., Volume 20 (1980) no. 2, pp. 243-261 | DOI | MR | Zbl
[17] Time-dependent scattering theory for Schrödinger operators on scattering manifolds, J. Lond. Math. Soc., Volume 81 (2010) no. 3, pp. 774-792 | DOI | MR | Zbl
[18] Scattering theory for Riemannian Laplacians, J. Funct. Anal., Volume 264 (2013) no. 8, pp. 1929-1974 | DOI | MR | Zbl
[19] Time-dependent scattering theory on manifolds, J. Funct. Anal., Volume 277 (2019) no. 5, pp. 1423-1468 | DOI | MR
[20] Radiation condition bounds on manifolds with ends, J. Funct. Anal., Volume 278 (2020) no. 9, p. 108449 | DOI | MR | Zbl
[21] Das asymptotische Verhalten von Lösungen eines Typs von Differentialgleichungen, Math. Z., Volume 112 (1969), pp. 26-36 | DOI | MR | Zbl
[22] Ein gewöhnlicher Differentialoperator zweiter Ordnung für Funktionen mit Werten in einem Hilbertraum, Math. Z., Volume 113 (1970), pp. 68-98 | DOI | MR | Zbl
[23] On the essential spectrum of the Laplacian on complete manifolds, J. Math. Soc. Japan, Volume 49 (1997) no. 1, pp. 1-14 | DOI | MR | Zbl
[24] Limiting absorption principle on manifolds having ends with various measure growth rate limits, Proc. Lond. Math. Soc., Volume 107 (2013) no. 3, pp. 517-548 | DOI | MR | Zbl
[25] Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) (Lecture Notes in Pure and Applied Mathematics), Volume 161, Marcel Dekker, 1994, pp. 85-130 | MR | Zbl
[26] Methods of modern mathematical physics. I–IV, Academic Press Inc., 1972–79
[27] Spectral representations for Schrödinger operators with long-range potentials, Lecture Notes in Mathematics, 727, Springer, 1979, 149 pages | DOI | MR
[28] Renormalized two-body low-energy scattering, J. Anal. Math., Volume 122 (2014), pp. 25-68 | DOI | MR | Zbl
[29] Propagation of singularities in three-body scattering, Astérisque, 262, Société Mathématique de France, 2000, vi+151 pages | Numdam | MR
[30] Scattering theory: some old and new problems, Lecture Notes in Mathematics, 1735, Springer, 2000, xvi+169 pages | DOI | MR
[31] Functional analysis, Grundlehren der Mathematischen Wissenschaften, 123, Springer, 1965, xi+458 pages | MR
Cité par Sources :