Formal classification of two-dimensional neighborhoods of genus g2 curves with trivial normal bundle
[Classification formelle des voisinages de courbes de genre g2 avec fibré normal trivial]
Annales de l'Institut Fourier, Tome 70 (2020) no. 5, pp. 1825-1846.

On étudie dans ce papier la classification formelle des voisinages de dimension deux de courbes de genre g2 dont le fibré normal est trivial. On construit tout d’abord sur de tels voisinages des feuilletages formels dont l’holonomie s’annule le long de nombreux lacets, puis on donne la classification formelle / analytique des voisinages équipés de deux feuilletages, et finalement on rassemble tout cela pour obtenir une description de l’espace des voisinages modulo équivalence formelle.

In this paper we study the formal classification of two-dimensional neighborhoods of genus g2 curves with trivial normal bundle. We first construct formal foliations on such neighborhoods with holonomy vanishing along many loops, then give the formal / analytic classification of neighborhoods equipped with two foliations, and finally put this together to obtain a description of the space of neighborhoods up to formal equivalence.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3376
Classification : 32Q57, 32G12, 37F75
Keywords: formal neighborhoods, foliations
Mot clés : voisinages formels, feuilletages

Thom, Olivier 1

1 Univ Rennes CNRS IRMAR - UMR 6625 F-35000 Rennes (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2020__70_5_1825_0,
     author = {Thom, Olivier},
     title = {Formal classification of two-dimensional neighborhoods of genus $g\ge 2$ curves with trivial normal bundle},
     journal = {Annales de l'Institut Fourier},
     pages = {1825--1846},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {70},
     number = {5},
     year = {2020},
     doi = {10.5802/aif.3376},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3376/}
}
TY  - JOUR
AU  - Thom, Olivier
TI  - Formal classification of two-dimensional neighborhoods of genus $g\ge 2$ curves with trivial normal bundle
JO  - Annales de l'Institut Fourier
PY  - 2020
SP  - 1825
EP  - 1846
VL  - 70
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3376/
DO  - 10.5802/aif.3376
LA  - en
ID  - AIF_2020__70_5_1825_0
ER  - 
%0 Journal Article
%A Thom, Olivier
%T Formal classification of two-dimensional neighborhoods of genus $g\ge 2$ curves with trivial normal bundle
%J Annales de l'Institut Fourier
%D 2020
%P 1825-1846
%V 70
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3376/
%R 10.5802/aif.3376
%G en
%F AIF_2020__70_5_1825_0
Thom, Olivier. Formal classification of two-dimensional neighborhoods of genus $g\ge 2$ curves with trivial normal bundle. Annales de l'Institut Fourier, Tome 70 (2020) no. 5, pp. 1825-1846. doi : 10.5802/aif.3376. https://aif.centre-mersenne.org/articles/10.5802/aif.3376/

[1] Arnol’d, Vladimir Igorevich Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves, Funkts. Anal. Prilozh., Volume 10 (1976) no. 4, pp. 1-12 | MR

[2] Camacho, César; Movasati, Hossein Neighborhoods of analytic varieties, Monografías del Instituto de Matemática y Ciencias Afines, 35, Instituto de Matemática y Ciencias Afines; Pontificia Universidad Católica del Perú, 2003, v+90 pages | MR | Zbl

[3] Cerveau, Dominique; Moussu, Robert Groupes d’automorphismes de (C,0) et équations différentielles ydy+=0, Bull. Soc. Math. Fr., Volume 116 (1988) no. 4, pp. 459-488 | DOI | MR

[4] Claudon, Benoît; Loray, Frank; Pereira, Jorge Vitório; Touzet, Frédéric Compact leaves of codimension one holomorphic foliations on projective manifolds, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 6, pp. 1457-1506 | DOI | MR

[5] Grauert, Hans Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | MR | Zbl

[6] Il’yashenko, Yulij S. Imbeddings of positive type of elliptic curves into complex surfaces, Tr. Mosk. Mat. O.-va, Volume 45 (1982), pp. 37-67 | MR

[7] Loray, Frank Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux. (2006) (https://hal.archives-ouvertes.fr/hal-00016434)

[8] Loray, Frank; Thom, Olivier; Touzet, Frédéric Two dimensional neighborhoods of elliptic curves: formal classification and foliations, Mosc. Math. J., Volume 19 (2019) no. 2, pp. 357-392 | DOI | MR

[9] Mishustin, Mikhail B. Neighborhoods of Riemann curves in complex surfaces, Funkts. Anal. Prilozh., Volume 29 (1995) no. 1, pp. 25-40 | DOI | MR | Zbl

[10] Mishustin, Mikhail B. On foliations in neighborhoods of elliptic curves, Arnold Math. J., Volume 2 (2016) no. 2, pp. 195-199 | DOI | MR | Zbl

[11] Neeman, Amnon Ueda theory: theorems and problems, Mem. Am. Math. Soc., Volume 81 (1989) no. 415, p. vi+123 | DOI | MR | Zbl

[12] Thom, Olivier Classification locale de bifeuilletages holomorphes sur les surfaces complexes, Bull. Braz. Math. Soc. (N.S.), Volume 47 (2016) no. 4, pp. 989-1005 | DOI | MR | Zbl

[13] Thom, Olivier Structures bifeuilletées en codimension 1, Ph. D. Thesis, Université de Rennes 1 (France) (2017) (https://www.theses.fr/2017REN1S064)

[14] Ueda, Tetsuo On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., Volume 22 (1982/83) no. 4, pp. 583-607 | DOI | MR | Zbl

Cité par Sources :