On étudie dans ce papier la classification formelle des voisinages de dimension deux de courbes de genre dont le fibré normal est trivial. On construit tout d’abord sur de tels voisinages des feuilletages formels dont l’holonomie s’annule le long de nombreux lacets, puis on donne la classification formelle / analytique des voisinages équipés de deux feuilletages, et finalement on rassemble tout cela pour obtenir une description de l’espace des voisinages modulo équivalence formelle.
In this paper we study the formal classification of two-dimensional neighborhoods of genus curves with trivial normal bundle. We first construct formal foliations on such neighborhoods with holonomy vanishing along many loops, then give the formal / analytic classification of neighborhoods equipped with two foliations, and finally put this together to obtain a description of the space of neighborhoods up to formal equivalence.
Révisé le :
Accepté le :
Publié le :
Keywords: formal neighborhoods, foliations
Mot clés : voisinages formels, feuilletages
Thom, Olivier 1
@article{AIF_2020__70_5_1825_0, author = {Thom, Olivier}, title = {Formal classification of two-dimensional neighborhoods of genus $g\ge 2$ curves with trivial normal bundle}, journal = {Annales de l'Institut Fourier}, pages = {1825--1846}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {5}, year = {2020}, doi = {10.5802/aif.3376}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3376/} }
TY - JOUR AU - Thom, Olivier TI - Formal classification of two-dimensional neighborhoods of genus $g\ge 2$ curves with trivial normal bundle JO - Annales de l'Institut Fourier PY - 2020 SP - 1825 EP - 1846 VL - 70 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3376/ DO - 10.5802/aif.3376 LA - en ID - AIF_2020__70_5_1825_0 ER -
%0 Journal Article %A Thom, Olivier %T Formal classification of two-dimensional neighborhoods of genus $g\ge 2$ curves with trivial normal bundle %J Annales de l'Institut Fourier %D 2020 %P 1825-1846 %V 70 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3376/ %R 10.5802/aif.3376 %G en %F AIF_2020__70_5_1825_0
Thom, Olivier. Formal classification of two-dimensional neighborhoods of genus $g\ge 2$ curves with trivial normal bundle. Annales de l'Institut Fourier, Tome 70 (2020) no. 5, pp. 1825-1846. doi : 10.5802/aif.3376. https://aif.centre-mersenne.org/articles/10.5802/aif.3376/
[1] Bifurcations of invariant manifolds of differential equations, and normal forms of neighborhoods of elliptic curves, Funkts. Anal. Prilozh., Volume 10 (1976) no. 4, pp. 1-12 | MR
[2] Neighborhoods of analytic varieties, Monografías del Instituto de Matemática y Ciencias Afines, 35, Instituto de Matemática y Ciencias Afines; Pontificia Universidad Católica del Perú, 2003, v+90 pages | MR | Zbl
[3] Groupes d’automorphismes de et équations différentielles , Bull. Soc. Math. Fr., Volume 116 (1988) no. 4, pp. 459-488 | DOI | MR
[4] Compact leaves of codimension one holomorphic foliations on projective manifolds, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 6, pp. 1457-1506 | DOI | MR
[5] Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., Volume 146 (1962), pp. 331-368 | DOI | MR | Zbl
[6] Imbeddings of positive type of elliptic curves into complex surfaces, Tr. Mosk. Mat. O.-va, Volume 45 (1982), pp. 37-67 | MR
[7] Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux. (2006) (https://hal.archives-ouvertes.fr/hal-00016434)
[8] Two dimensional neighborhoods of elliptic curves: formal classification and foliations, Mosc. Math. J., Volume 19 (2019) no. 2, pp. 357-392 | DOI | MR
[9] Neighborhoods of Riemann curves in complex surfaces, Funkts. Anal. Prilozh., Volume 29 (1995) no. 1, pp. 25-40 | DOI | MR | Zbl
[10] On foliations in neighborhoods of elliptic curves, Arnold Math. J., Volume 2 (2016) no. 2, pp. 195-199 | DOI | MR | Zbl
[11] Ueda theory: theorems and problems, Mem. Am. Math. Soc., Volume 81 (1989) no. 415, p. vi+123 | DOI | MR | Zbl
[12] Classification locale de bifeuilletages holomorphes sur les surfaces complexes, Bull. Braz. Math. Soc. (N.S.), Volume 47 (2016) no. 4, pp. 989-1005 | DOI | MR | Zbl
[13] Structures bifeuilletées en codimension , Ph. D. Thesis, Université de Rennes 1 (France) (2017) (https://www.theses.fr/2017REN1S064)
[14] On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., Volume 22 (1982/83) no. 4, pp. 583-607 | DOI | MR | Zbl
Cité par Sources :