Nous démontrons un contrôle épars qualitatif pour la troncature maximale des noyaux de convolution dont la transformée de Fourier satisfait des conditions de décroissance appropriées. Notre résultat étend le principe de contrôle épars de Conde-Alonso, Culiuc, Ou et du premier auteur au cas de la troncature maximale, et inclut le cas des intégrales singulières homogènes sur dont la composante angulaire est bornée et a une moyenne nulle. Parmi les diverses conséquences, nous obtenons de nouvelles inégalités quantitatives pondérées pour la troncature maximale de , l’extension d’un résultat de Roncal, Tapiola et du second auteur. De plus, une extension appropriée aux valeurs vectorielles du contrôle épars implique de nouvelles estimations à poids matriciels pour les troncatures maximales de . Notre résultat est quantitatif, mais il est nouveau même d’un point de vue qualitatif. L’approche actuelle basée sur le contrôle épars est la seule actuellement connue pour les estimations à poids matriciels de cette classe d’opérateurs.
We prove a quantified sparse bound for the maximal truncations of convolution-type singular integrals with suitable Fourier decay of the kernel. Our result extends the sparse domination principle by Conde-Alonso, Culiuc, Ou and the first author to the maximally truncated case, and covers the rough homogeneous singular integrals on with bounded angular part having vanishing integral on the sphere. Among several consequences, we obtain new quantitative weighted norm inequalities for the maximal truncation of , extending a result by Roncal, Tapiola and the second author.
A convex-body valued version of the sparse bound is also deduced and employed towards novel matrix-weighted norm inequalities for the maximal truncations of . Our result is quantitative, but even the qualitative statement is new, and the present approach via sparse domination is the only one currently known for the matrix weighted bounds of this class of operators.
Révisé le :
Accepté le :
Publié le :
Keywords: Sparse domination, rough singular integrals, weighted norm inequalities
Mot clés : contrôle épars, intégrales singulières de finesse limitée, estimations á poids
Di Plinio, Francesco 1 ; Hytönen, Tuomas P. 2 ; Li, Kangwei 3
@article{AIF_2020__70_5_1871_0, author = {Di Plinio, Francesco and Hyt\"onen, Tuomas P. and Li, Kangwei}, title = {Sparse bounds for maximal rough singular integrals via the {Fourier} transform}, journal = {Annales de l'Institut Fourier}, pages = {1871--1902}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {5}, year = {2020}, doi = {10.5802/aif.3354}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3354/} }
TY - JOUR AU - Di Plinio, Francesco AU - Hytönen, Tuomas P. AU - Li, Kangwei TI - Sparse bounds for maximal rough singular integrals via the Fourier transform JO - Annales de l'Institut Fourier PY - 2020 SP - 1871 EP - 1902 VL - 70 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3354/ DO - 10.5802/aif.3354 LA - en ID - AIF_2020__70_5_1871_0 ER -
%0 Journal Article %A Di Plinio, Francesco %A Hytönen, Tuomas P. %A Li, Kangwei %T Sparse bounds for maximal rough singular integrals via the Fourier transform %J Annales de l'Institut Fourier %D 2020 %P 1871-1902 %V 70 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3354/ %R 10.5802/aif.3354 %G en %F AIF_2020__70_5_1871_0
Di Plinio, Francesco; Hytönen, Tuomas P.; Li, Kangwei. Sparse bounds for maximal rough singular integrals via the Fourier transform. Annales de l'Institut Fourier, Tome 70 (2020) no. 5, pp. 1871-1902. doi : 10.5802/aif.3354. https://aif.centre-mersenne.org/articles/10.5802/aif.3354/
[1] Sharp weighted norm estimates beyond Calderón-Zygmund theory, Anal. PDE, Volume 9 (2016) no. 5, pp. 1079-1113 | DOI | MR
[2] Two weight estimates with matrix measures for well localized operators (2016) (https://arxiv.org/abs/1611.06667, to appear in Trans. Amer. Math. Soc.)
[3] Bounds for the Hilbert transform with matrix weights, J. Funct. Anal., Volume 270 (2016) no. 5, pp. 1719-1743 | DOI | MR
[4] Weak type bounds for rough operators, Ann. Math., Volume 128 (1988) no. 1, pp. 19-42 | DOI | MR
[5] Weak type bounds for rough operators. II, Invent. Math., Volume 93 (1988) no. 1, pp. 225-237 | DOI | MR
[6] Vector weights and a Hardy-Littlewood maximal function, Trans. Am. Math. Soc., Volume 353 (2001) no. 5, pp. 1995-2002 | DOI | MR
[7] A sparse domination principle for rough singular integrals, Anal. PDE, Volume 10 (2017) no. 5, pp. 1255-1284 | DOI | MR | Zbl
[8] Domination of multilinear singular integrals by positive sparse forms, J. Lond. Math. Soc., Volume 98 (2018) no. 2, pp. 369-392 | DOI | MR | Zbl
[9] Uniform sparse domination of singular integrals via dyadic shifts, Math. Res. Lett., Volume 25 (2018) no. 1, pp. 21-42 | DOI | MR | Zbl
[10] Sparse bounds for the discrete cubic Hilbert transform, Anal. PDE, Volume 12 (2019) no. 5, pp. 1259-1272 | DOI | MR | Zbl
[11] On weighted norm inequalities for the Carleson and Walsh-Carleson operator, J. Lond. Math. Soc., Volume 90 (2014) no. 3, pp. 654-674 | DOI | MR | Zbl
[12] Maximal and singular integral operators via Fourier transform estimates, Invent. Math., Volume 84 (1986) no. 3, pp. 541-561 | DOI | MR | Zbl
[13] Sparse domination of sharp variational truncations (2016) (https://arxiv.org/abs/1604.05506)
[14] Sharp reverse Hölder property for weights on spaces of homogeneous type, J. Funct. Anal., Volume 263 (2012) no. 12, pp. 3883-3899 | DOI | MR | Zbl
[15] The sharp square function estimate with matrix weight (2017) (https://arxiv.org/abs/1702.04569) | Zbl
[16] Quantitative weighted estimates for rough homogeneous singular integrals, Isr. J. Math., Volume 218 (2017) no. 1, pp. 133-164 | DOI | MR | Zbl
[17] Matrix weighted norm inequalities for commutators and paraproducts with matrix symbols, J. Lond. Math. Soc., Volume 96 (2017) no. 1, pp. 243-270 | DOI | MR | Zbl
[18] An elementary proof of the bound, Isr. J. Math., Volume 217 (2017) no. 1, pp. 181-195 | DOI | MR | Zbl
[19] Sparse bounds for spherical maximal functions (2017) (https://arxiv.org/abs/1702.08594, to appear in J. Anal. Math.)
[20] The sparse T1 Theorem, Houston J. Math., Volume 43 (2017) no. 1, pp. 111-127 | MR
[21] Sparse bounds for oscillatory and random singular integrals, New York J. Math., Volume 23 (2017), pp. 119-131 | MR
[22] On pointwise estimates involving sparse operators, New York J. Math., Volume 22 (2016), pp. 341-349 | MR
[23] A weak type estimate for rough singular integrals (2017) (https://arxiv.org/abs/1705.07397, to appear in Rev. Mat. Iberoam.) | Zbl
[24] On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv. Math., Volume 319 (2017), pp. 153-181 | DOI | MR | Zbl
[25] Sharp weighted estimates involving one supremum, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 8, pp. 906-909 | DOI | MR | Zbl
[26] Two weight inequalities for bilinear forms, Collect. Math., Volume 68 (2017) no. 1, pp. 129-144 | MR | Zbl
[27] Sparse domination theorem for multilinear singular integral operators with -Hörmander condition, Mich. Math. J., Volume 67 (2018) no. 2, pp. 253-265 | DOI | MR | Zbl
[28] Weighted norm inequalities for rough singular integral operators, J. Geom. Anal., Volume 29 (2019) no. 3, pp. 2526-2564 | DOI | MR | Zbl
[29] Optimal exponents in weighted estimates without examples, Math. Res. Lett., Volume 22 (2015) no. 1, pp. 183-201 | DOI | MR
[30] Convex body domination and weighted estimates with matrix weights, Adv. Math., Volume 318 (2017), pp. 279-306 | DOI | MR
[31] Singular integral operators with rough convolution kernels, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 95-105 | DOI | MR
[32] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993, xiv+695 pages (with the assistance of Timothy S. Murphy) | MR | Zbl
[33] - estimates for multilinear maximal and sparse operators (2016) (https://arxiv.org/abs/1609.06923, to appear in J. Anal. Math.) | Zbl
Cité par Sources :