Étant donné un morphisme birationnel projectif de variétés nous fournissons une manière explicite et naturelle de construire des compactifications relatives des applications induites sur les composantes principales des espaces de jets. Dans le cas où le morphisme est l’éclatement de Nash d’une variété, nous montrons que ces compactifications relatives sont données par les éclatements de Nash des composantes principales des espaces de jets.
Given an arbitrary projective birational morphism of varieties, we provide a natural and explicit way of constructing relative compactifications of the maps induced on the main components of the jet schemes. In the case the morphism is the Nash blow-up of a variety, such relative compactifications are shown to be given by the Nash blow-ups of the main components of the jet schemes.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3302
Keywords: Jet scheme, Nash blow-up, singularities, Grassmannian, functor of points
Mot clés : Espace de jets, éclatement de Nash, singularités, Grassmanienne, foncteur de points
de Fernex, Tommaso 1 ; Docampo, Roi 2
@article{AIF_2019__69_6_2577_0, author = {de Fernex, Tommaso and Docampo, Roi}, title = {Nash blow-ups of jet schemes}, journal = {Annales de l'Institut Fourier}, pages = {2577--2588}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {6}, year = {2019}, doi = {10.5802/aif.3302}, zbl = {1345.14020}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3302/} }
TY - JOUR AU - de Fernex, Tommaso AU - Docampo, Roi TI - Nash blow-ups of jet schemes JO - Annales de l'Institut Fourier PY - 2019 SP - 2577 EP - 2588 VL - 69 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3302/ DO - 10.5802/aif.3302 LA - en ID - AIF_2019__69_6_2577_0 ER -
%0 Journal Article %A de Fernex, Tommaso %A Docampo, Roi %T Nash blow-ups of jet schemes %J Annales de l'Institut Fourier %D 2019 %P 2577-2588 %V 69 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3302/ %R 10.5802/aif.3302 %G en %F AIF_2019__69_6_2577_0
de Fernex, Tommaso; Docampo, Roi. Nash blow-ups of jet schemes. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2577-2588. doi : 10.5802/aif.3302. https://aif.centre-mersenne.org/articles/10.5802/aif.3302/
[1] The Nash problem for surfaces, Ann. Math., Volume 176 (2012) no. 3, pp. 2003-2029 | DOI | MR | Zbl
[2] Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 80, American Mathematical Society, 2009, pp. 505-546 | DOI | MR | Zbl
[3] Terminal valuations and the Nash problem, Invent. Math., Volume 203 (2016) no. 1, pp. 303-331 | DOI | MR | Zbl
[4] Differentials on the arc space, 2017 (to appear in Duke Math. J., https://arxiv.org/abs/1703.07505) | Zbl
[5] On Nash blowing-up, Arithmetic and geometry, Vol. II (Progress in Mathematics), Volume 36, Birkhäuser, 1983, pp. 103-111 | DOI | MR | Zbl
[6] Smoothness and jet schemes, Singularities—Niigata–Toyama 2007 (Advanced Studies in Pure Mathematics), Volume 56, Mathematical Society of Japan, 2009, pp. 187-199 | DOI | MR | Zbl
[7] Arcs analytiques et résolution minimale des surfaces quasihomogènes, Séminaire sur les Singularités des Surfaces, Palaiseau, 1976–1977 (Lecture Notes in Mathematics), Volume 777, Springer, 1980, pp. 303-332 | MR | Zbl
[8] Arc structure of singularities, Duke Math. J., Volume 81 (1995) no. 1, pp. 31-38 | DOI | MR | Zbl
[9] Some properties of the Nash blowing-up, Pac. J. Math., Volume 60 (1975) no. 1, pp. 297-305 | DOI | MR | Zbl
[10] Remarks on Nash blowing-up, Rend. Sem. Mat. Univ. Politec. Torino, Volume 49 (1991) no. 1, pp. 71-82 | MR | Zbl
[11] A curve selection lemma in spaces of arcs and the image of the Nash map, Compos. Math., Volume 142 (2006) no. 1, pp. 119-130 | DOI | MR
[12] Some investigations in the geometry of curve and surface elements, Proc. Lond. Math. Soc., Volume 4 (1954), pp. 24-49 | DOI | MR | Zbl
[13] Sandwiched singularities and desingularization of surfaces by normalized Nash transformations, Ann. Math., Volume 131 (1990) no. 3, pp. 411-491 | DOI | MR | Zbl
[14] Jets via Hasse–Schmidt derivations, Diophantine geometry (CRM Series), Volume 4, Edizioni della Normale, 2007, pp. 335-361 | MR | Zbl
[15] Higher Nash blowups, Compos. Math., Volume 143 (2007) no. 6, pp. 1493-1510 | DOI | MR | Zbl
Cité par Sources :