Soit le groupe de Kac–Moody minimal simplement connexe associé à un corps et à une matrice de Cartan généralisée . On note la complétion de introduite par O. Mathieu et G. Rousseau, et le radical unipotent du sous-groupe de Borel de . Dans cet article, nous mettons en évidence une dépendance fonctorielle des groupes et en leur algèbre de Lie. Nous apportons en outre plusieurs contributions à certaines questions fondamentales de la théorie générale des groupes de Kac–Moody maximaux : (non-)densité du groupe de Kac–Moody minimal dans sa complétion de Mathieu–Rousseau, (non-)Gabber–Kac simplicité sur certains corps finis, (non-)linéarité des sous-groupes pro- maximaux, et problème d’isomorphisme.
Let be a field and be a generalised Cartan matrix, and let be the corresponding minimal Kac–Moody group of simply connected type over . Consider the completion of introduced by O. Mathieu and G. Rousseau, and let denote the unipotent radical of the Borel subgroup of . In this paper, we exhibit a functorial dependence of the groups and on their Lie algebra. We also provide several contributions to fundamental questions in the general theory of maximal Kac–Moody groups: (non-)Gabber–Kac simplicity over certain finite fields, (non-)density of a minimal Kac–Moody group in its Mathieu–Rousseau completion, (non-)linearity of maximal pro- subgroups, and the isomorphism problem.
Révisé le :
Accepté le :
Publié le :
Keywords: Kac–Moody groups, Lie correspondence, Gabber–Kac simplicity, Linearity problem, Isomorphism problem
Mot clés : Groupes de Kac–Moody, Correspondance de Lie, Simplicité au sens de Gabber–Kac, Problème de linéarité, Problème d’isomorphisme
Marquis, Timothée 1
@article{AIF_2019__69_6_2519_0, author = {Marquis, Timoth\'ee}, title = {Around the {Lie} correspondence for complete {Kac{\textendash}Moody} groups and {Gabber{\textendash}Kac} simplicity}, journal = {Annales de l'Institut Fourier}, pages = {2519--2576}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {6}, year = {2019}, doi = {10.5802/aif.3301}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3301/} }
TY - JOUR AU - Marquis, Timothée TI - Around the Lie correspondence for complete Kac–Moody groups and Gabber–Kac simplicity JO - Annales de l'Institut Fourier PY - 2019 SP - 2519 EP - 2576 VL - 69 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3301/ DO - 10.5802/aif.3301 LA - en ID - AIF_2019__69_6_2519_0 ER -
%0 Journal Article %A Marquis, Timothée %T Around the Lie correspondence for complete Kac–Moody groups and Gabber–Kac simplicity %J Annales de l'Institut Fourier %D 2019 %P 2519-2576 %V 69 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3301/ %R 10.5802/aif.3301 %G en %F AIF_2019__69_6_2519_0
Marquis, Timothée. Around the Lie correspondence for complete Kac–Moody groups and Gabber–Kac simplicity. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2519-2576. doi : 10.5802/aif.3301. https://aif.centre-mersenne.org/articles/10.5802/aif.3301/
[1] Buildings. Theory and applications, Graduate Texts in Mathematics, 248, Springer, 2008, xxii+747 pages | Zbl
[2] On some pro- groups from infinite-dimensional Lie theory, Math. Z., Volume 278 (2014) no. 1-2, pp. 39-54 | DOI | MR | Zbl
[3] “Abstract” homomorphisms of split Kac–Moody groups, Mem. Am. Math. Soc., Volume 198 (2009) no. 924, xvi+84 pages | MR | Zbl
[4] Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups, Forum Math. Sigma, Volume 5 (2017), e12, 89 pages | DOI | MR | Zbl
[5] Simplicity and superrigidity of twin building lattices, Invent. Math., Volume 176 (2009) no. 1, pp. 169-221 | DOI | MR | Zbl
[6] Totally disconnected locally compact groups with a linear open subgroup, Int. Math. Res. Not. (2015) no. 24, pp. 13800-13829 | DOI | MR | Zbl
[7] Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits, J. Phys. A, Math. Gen., Volume 43 (2010) no. 15, 155209, 30 pages | DOI | MR | Zbl
[8] Existence of lattices in Kac–Moody groups over finite fields, Commun. Contemp. Math., Volume 5 (2003) no. 5, pp. 813-867 | DOI | MR | Zbl
[9] Analytic pro- groups, Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, 1999, xviii+368 pages | DOI | MR | Zbl
[10] Generalized spin representations, Münster J. Math., Volume 8 (2015) no. 1, pp. 181-210 (With an appendix by Max Horn and Ralf Köhl) | MR | Zbl
[11] Infinite-dimensional Lie algebras, Cambridge University Press, 1990, xxii+400 pages | Zbl
[12] Rank symmetric hyperbolic Kac–Moody algebras, Nagoya Math. J., Volume 140 (1995), pp. 41-75 | DOI | MR | Zbl
[13] Kac–Moody groups, their flag varieties and representation theory, Progress in Mathematics, 204, Birkhäuser, 2002, xvi+606 pages | MR | Zbl
[14] Combinatorial group theory, Classics in Mathematics, Springer, 2001, xiv+339 pages (Reprint of the 1977 edition) | Zbl
[15] Topological Kac–Moody groups and their subgroups, Université Catholique de Louvain (Belgium) (2013) (Ph. D. Thesis) | Zbl
[16] Abstract simplicity of locally compact Kac-Moody groups, Compos. Math., Volume 150 (2014) no. 4, pp. 713-728 | DOI | MR | Zbl
[17] An introduction to Kac–Moody groups over fields, EMS Textbooks in Mathematics, European Mathematical Society, 2018, 343 pages | DOI | MR | Zbl
[18] Construction du groupe de Kac–Moody et applications, C. R. Math. Acad. Sci. Paris, Volume 306 (1988) no. 5, pp. 227-230 | MR | Zbl
[19] A simplicity theorem for Chevalley groups defined by generalized Cartan matrices (preprint)
[20] Root strings with three or four real roots in Kac-Moody root systems, Tôhoku Math. J., Volume 40 (1988) no. 4, pp. 645-650 | DOI | MR | Zbl
[21] Locally split and locally finite twin buildings of -spherical type, J. Reine Angew. Math., Volume 511 (1999), pp. 119-143 | DOI | MR | Zbl
[22] Twin buildings, Tits buildings and the model theory of groups (Würzburg, 2000) (London Mathematical Society Lecture Note Series), Volume 291, Cambridge University Press, 2002, pp. 103-117 | DOI | MR | Zbl
[23] On finitely generated profinite groups. I. Strong completeness and uniform bounds, Ann. Math., Volume 165 (2007) no. 1, pp. 171-238 | DOI | MR | Zbl
[24] Groupes de Kac–Moody déployés et presque déployés, Astérisque, 277, Société Mathématique de France, 2002, viii+348 pages | Zbl
[25] Topological simplicity, commensurator super-rigidity and non-linearities of Kac–Moody groups, Geom. Funct. Anal., Volume 14 (2004) no. 4, pp. 810-852 (With an appendix by P. Bonvin) | DOI | MR | Zbl
[26] Topological groups of Kac–Moody type, right-angled twinnings and their lattices, Comment. Math. Helv., Volume 81 (2006) no. 1, pp. 191-219 | DOI | MR | Zbl
[27] The congruence subgroup problem over local fields, Am. J. Math., Volume 92 (1970), pp. 771-778 | DOI | MR | Zbl
[28] Groupes de Kac–Moody déployés sur un corps local, II Masures ordonnées, Bull. Soc. Math. Fr., Volume 144 (2016) no. 4, pp. 613-692 | DOI | MR | Zbl
[29] Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra, Volume 105 (1987) no. 2, pp. 542-573 | DOI | MR | Zbl
Cité par Sources :