Dans le contexte général de l’étude de l’existence de -cylindres ouverts dans les variétés projectives de dimension supérieure, nous considérons le cas des fibrations de Mori de dimension relative trois, dont les fibres générales sont isomorphes au volume quintique de del Pezzo, l’unique variété de Fano lisse de degré cinq et d’indice deux. Nous établissons que les espaces totaux de fibrations de Mori de ce type contiennent toujours un -cylindre relatif au-dessus de la base de la fibration. Nous donnons également une caractérisation reliant l’existence de -cylindres relatifs à l’existence de certaines droites spéciales dans la fibre générique de ces fibrations
Motivated by the general question of existence of open -cylinders in higher dimensional projective varieties, we consider the case of Mori Fiber Spaces of relative dimension three, whose general closed fibers are isomorphic to the quintic del Pezzo threefold, the smooth Fano threefold of index two and degree five. We show that the total spaces of these Mori Fiber Spaces always contain a relative -cylinder, and we characterize those admitting relative -cylinders in terms of the existence of certain special lines in their generic fiber.
Révisé le :
Accepté le :
Publié le :
Keywords: Volumes de Fano, Fibrations de Mori, Liens de Sarkisov, Involutions de Cremona, Cylindres
Mot clés : Fano threefolds, Mori Fiber Space, Sarkisov link, Cremona involutions, Cylinders
Dubouloz, Adrien 1 ; Kishimoto, Takashi 2
@article{AIF_2019__69_6_2377_0, author = {Dubouloz, Adrien and Kishimoto, Takashi}, title = {Cylindres dans les fibrations de {Mori:} formes du volume quintique de del {Pezzo}}, journal = {Annales de l'Institut Fourier}, pages = {2377--2393}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {6}, year = {2019}, doi = {10.5802/aif.3297}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3297/} }
TY - JOUR AU - Dubouloz, Adrien AU - Kishimoto, Takashi TI - Cylindres dans les fibrations de Mori: formes du volume quintique de del Pezzo JO - Annales de l'Institut Fourier PY - 2019 SP - 2377 EP - 2393 VL - 69 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3297/ DO - 10.5802/aif.3297 LA - en ID - AIF_2019__69_6_2377_0 ER -
%0 Journal Article %A Dubouloz, Adrien %A Kishimoto, Takashi %T Cylindres dans les fibrations de Mori: formes du volume quintique de del Pezzo %J Annales de l'Institut Fourier %D 2019 %P 2377-2393 %V 69 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3297/ %R 10.5802/aif.3297 %G en %F AIF_2019__69_6_2377_0
Dubouloz, Adrien; Kishimoto, Takashi. Cylindres dans les fibrations de Mori: formes du volume quintique de del Pezzo. Annales de l'Institut Fourier, Tome 69 (2019) no. 6, pp. 2377-2393. doi : 10.5802/aif.3297. https://aif.centre-mersenne.org/articles/10.5802/aif.3297/
[1] Existence of minimal models for varieties of log general type, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 405-468 | DOI | MR | Zbl
[2] Explicit biregular/birational geometry of affine threefolds: completions of into del Pezzo fibrations and Mori conic bundles, Algebraic varieties and automorphism groups (Advanced Studies in Pure Mathematics), Volume 75, Mathematical Society of Japan, 2017, pp. 49-71 | DOI | MR | Zbl
[3] Cylinders in del Pezzo fibrations, Isr. J. Math., Volume 225 (2018) no. 2, pp. 797-815 | DOI | MR | Zbl
[4] Deformations of -cylindrical varieties, Math. Ann., Volume 373 (2019) no. 3-4, pp. 1135-1149 | DOI | MR | Zbl
[5] The complete classification of compactifications of which are projective manifolds with the second Betti number one, Math. Ann., Volume 297 (1993) no. 4, pp. 627-662 | DOI | MR | Zbl
[6] The family of lines on the Fano threefold , Nagoya Math. J., Volume 116 (1989), pp. 111-122 | DOI | Zbl
[7] A new construction of a compactification of , Tôhoku Math. J., Volume 41 (1989) no. 4, pp. 543-560 | DOI | MR | Zbl
[8] The Fano surface of the Gushel’ threefold, Compos. Math., Volume 94 (1994) no. 1, pp. 81-107 | MR | Zbl
[9] Lines on the Gushel’ threefold, Indag. Math., New Ser., Volume 5 (1994) no. 3, pp. 307-320 | DOI | MR | Zbl
[10] Anticanonical models of three-dimensional algebraic varieties, Current problems in mathematics, Vol. 12 (Russian), VINITI, 1979, pp. 59-157
[11] Group actions on affine cones, Affine algebraic geometry (CRM Proceedings & Lecture Notes), Volume 54, American Mathematical Society, 2011, pp. 123-163 | DOI | MR
[12] -actions on affine cones, Transform. Groups, Volume 18 (2013) no. 4, pp. 1137-1153 | DOI | MR | Zbl
[13] Affine cones over Fano threefolds and additive group actions, Osaka J. Math., Volume 51 (2014) no. 4, pp. 1093-1112 | MR | Zbl
[14] Construction of the rationality of fields of invariants of some finite four-dimensional linear groups that are connected with Fano threefolds, Mat. Zametki, Volume 51 (1992) no. 1, pp. 114-117 | DOI | MR | Zbl
[15] Hilbert schemes of lines and conics and automorphism groups of Fano threefolds, Jpn. J. Math., Volume 13 (2018) no. 1, pp. 109-185 | DOI | MR | Zbl
[16] Sur les algèbres universelles, Ann. Inst. Fourier, Volume 14 (1964) no. 2, pp. 33-87 | DOI | Zbl
[17] Minimal rational threefolds, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Mathematics), Volume 1016, Springer, 1983, pp. 490-518 | DOI | MR | Zbl
[18] Fano threefolds of genus and compactifications of , Algebra Anal., Volume 3 (1991) no. 4, pp. 162-170 | MR | Zbl
[19] Examples of cylindrical Fano fourfolds, Eur. J. Math., Volume 2 (2016) no. 1, pp. 262-282 | DOI | MR | Zbl
[20] New examples of cylindrical Fano fourfolds, Algebraic varieties and automorphism groups (Advanced Studies in Pure Mathematics), Volume 75, Mathematical Society of Japan, 2017, pp. 443-463 | DOI | MR | Zbl
[21] Sur les modules projectifs, Séminaire Dubreil. Algèbre et théorie des nombres (1960/61), Secrétariat mathématique, 1963, pp. 1-16 | Zbl
[22] Some birational maps of Fano -folds, Compos. Math., Volume 71 (1989) no. 3, pp. 265-283 | MR | Zbl
Cité par Sources :