Defect measures of eigenfunctions with maximal L growth
[Mesures de défaut de fonctions propres avec croissance L maximale]
Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1757-1798.

Nous caractérisons les mesures de défauts de séquences de fonctions propres de Laplace avec croissance L maximale. En conséquence, nous obtenons des nouvelles preuves de résultats sur la géométrie des variétés avec une croissance des fonctions propres maximale obtenus par Sogge–Toth–Zelditch, et nous généralisons ceux de Sogge–Zelditch au cas lisse. Nous obtenons également une dépendance géométrique explicite de la constante de Hörmander L liée aux functions propres de haute énergie, améliorant les estimations de Donnelly.

We characterize the defect measures of sequences of Laplace eigenfunctions with maximal L growth. As a consequence, we obtain new proofs of results on the geometry of manifolds with maximal eigenfunction growth obtained by Sogge–Toth–Zelditch, and generalize those of Sogge–Zelditch to the smooth setting. We also obtain explicit geometric dependence on the constant in Hörmander’s L bound for high energy eigenfunctions, improving on estimates of Donnelly.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3281
Classification : 35P20, 58J50
Keywords: eigenfunctions, defect measures, sup-norms
Mot clés : fonction propres, mesures de défaut, norme de supremum

Galkowski, Jeffrey 1

1 Stanford University Department of Mathematics Stanford, CA (USA)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2019__69_4_1757_0,
     author = {Galkowski, Jeffrey},
     title = {Defect measures of eigenfunctions with maximal $L^\infty $ growth},
     journal = {Annales de l'Institut Fourier},
     pages = {1757--1798},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {69},
     number = {4},
     year = {2019},
     doi = {10.5802/aif.3281},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3281/}
}
TY  - JOUR
AU  - Galkowski, Jeffrey
TI  - Defect measures of eigenfunctions with maximal $L^\infty $ growth
JO  - Annales de l'Institut Fourier
PY  - 2019
SP  - 1757
EP  - 1798
VL  - 69
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3281/
DO  - 10.5802/aif.3281
LA  - en
ID  - AIF_2019__69_4_1757_0
ER  - 
%0 Journal Article
%A Galkowski, Jeffrey
%T Defect measures of eigenfunctions with maximal $L^\infty $ growth
%J Annales de l'Institut Fourier
%D 2019
%P 1757-1798
%V 69
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3281/
%R 10.5802/aif.3281
%G en
%F AIF_2019__69_4_1757_0
Galkowski, Jeffrey. Defect measures of eigenfunctions with maximal $L^\infty $ growth. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1757-1798. doi : 10.5802/aif.3281. https://aif.centre-mersenne.org/articles/10.5802/aif.3281/

[1] Avakumović, Vojislav G. Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z., Volume 65 (1956), pp. 327-344 | DOI | MR | Zbl

[2] Bérard, Pierre H. On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR | Zbl

[3] Blair, David E. Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, 2010, xvi+343 pages | DOI | MR | Zbl

[4] Blair, Matthew D.; Sogge, Christopher D. Refined and microlocal Kakeya–Nikodym bounds for eigenfunctions in two dimensions, Anal. PDE, Volume 8 (2015) no. 3, pp. 747-764 | DOI | MR | Zbl

[5] Blair, Matthew D.; Sogge, Christopher D. Refined and Microlocal Kakeya–Nikodym Bounds of Eigenfunctions in Higher Dimensions, Commun. Math. Phys., Volume 356 (2017) no. 2, pp. 501-533 | MR | Zbl

[6] Brin, Michael; Stuck, Garrett Introduction to dynamical systems, Cambridge University Press, 2002, xii+240 pages | DOI | MR | Zbl

[7] Donnelly, Harold Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds, J. Funct. Anal., Volume 187 (2001) no. 1, pp. 247-261 | DOI | MR | Zbl

[8] Dyatlov, Semyon; Zworski, Maciej Mathematical theory of scattering resonances (2017) (http://math.berkeley.edu/~zworski/res.pdf) | Zbl

[9] Galkowski, Jeffrey; Toth, John A. Eigenfunction scarring and improvements in L bounds, Anal. PDE, Volume 11 (2017) no. 3, pp. 801-812 | DOI | MR | Zbl

[10] Heinonen, Juha Lectures on analysis on metric spaces, Universitext, Springer, 2001, x+140 pages | DOI | MR | Zbl

[11] Hörmander, Lars The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl

[12] Iwaniec, Henryk; Sarnak, Peter L norms of eigenfunctions of arithmetic surfaces, Ann. Math., Volume 141 (1995) no. 2, pp. 301-320 | DOI | MR | Zbl

[13] Koch, Herbert; Tataru, Daniel; Zworski, Maciej Semiclassical L p estimates, Ann. Henri Poincaré, Volume 8 (2007) no. 5, pp. 885-916 | DOI | MR | Zbl

[14] Levitan, Boris M. On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 16 (1952), pp. 325-352 | MR

[15] Safarov, Yuri G. Asymptotic of the spectral function of a positive elliptic operator without the nontrap condition, Funct. Anal. Appl., Volume 22 (1988) no. 3, pp. 213-223 | DOI | Zbl

[16] Sogge, Christopher D. Concerning the L p norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 123-138 | MR | Zbl

[17] Sogge, Christopher D. Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 105, Cambridge University Press, 1993, x+237 pages | DOI | MR | Zbl

[18] Sogge, Christopher D. Kakeya–Nikodym averages and L p -norms of eigenfunctions, Tôhoku Math. J., Volume 63 (2011) no. 4, pp. 519-538 | DOI | MR | Zbl

[19] Sogge, Christopher D.; Toth, John A.; Zelditch, Steve About the blowup of quasimodes on Riemannian manifolds, J. Geom. Anal., Volume 21 (2011) no. 1, pp. 150-173 | DOI | MR | Zbl

[20] Sogge, Christopher D.; Zelditch, Steve Riemannian manifolds with maximal eigenfunction growth, Duke Math. J., Volume 114 (2002) no. 3, pp. 387-437 | DOI | MR | Zbl

[21] Sogge, Christopher D.; Zelditch, Steve Focal points and sup-norms of eigenfunctions, Rev. Mat. Iberoam., Volume 32 (2016) no. 3, pp. 971-994 | DOI | MR | Zbl

[22] Sogge, Christopher D.; Zelditch, Steve Focal points and sup-norms of eigenfunctions II: the two-dimensional case, Rev. Mat. Iberoam., Volume 32 (2016) no. 3, pp. 995-999 | DOI | MR | Zbl

[23] Toth, John A.; Zelditch, Steve Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J., Volume 111 (2002) no. 1, pp. 97-132 | DOI | MR | Zbl

[24] Toth, John A.; Zelditch, Steve Norms of modes and quasi-modes revisited, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001) (Contemporary Mathematics), Volume 320, American Mathematical Society, 2003, pp. 435-458 | DOI | MR | Zbl

[25] Zworski, Maciej Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl

Cité par Sources :