Nous caractérisons les mesures de défauts de séquences de fonctions propres de Laplace avec croissance maximale. En conséquence, nous obtenons des nouvelles preuves de résultats sur la géométrie des variétés avec une croissance des fonctions propres maximale obtenus par Sogge–Toth–Zelditch, et nous généralisons ceux de Sogge–Zelditch au cas lisse. Nous obtenons également une dépendance géométrique explicite de la constante de Hörmander liée aux functions propres de haute énergie, améliorant les estimations de Donnelly.
We characterize the defect measures of sequences of Laplace eigenfunctions with maximal growth. As a consequence, we obtain new proofs of results on the geometry of manifolds with maximal eigenfunction growth obtained by Sogge–Toth–Zelditch, and generalize those of Sogge–Zelditch to the smooth setting. We also obtain explicit geometric dependence on the constant in Hörmander’s bound for high energy eigenfunctions, improving on estimates of Donnelly.
Révisé le :
Accepté le :
Publié le :
Keywords: eigenfunctions, defect measures, sup-norms
Mot clés : fonction propres, mesures de défaut, norme de supremum
Galkowski, Jeffrey 1
@article{AIF_2019__69_4_1757_0, author = {Galkowski, Jeffrey}, title = {Defect measures of eigenfunctions with maximal $L^\infty $ growth}, journal = {Annales de l'Institut Fourier}, pages = {1757--1798}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {69}, number = {4}, year = {2019}, doi = {10.5802/aif.3281}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3281/} }
TY - JOUR AU - Galkowski, Jeffrey TI - Defect measures of eigenfunctions with maximal $L^\infty $ growth JO - Annales de l'Institut Fourier PY - 2019 SP - 1757 EP - 1798 VL - 69 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3281/ DO - 10.5802/aif.3281 LA - en ID - AIF_2019__69_4_1757_0 ER -
%0 Journal Article %A Galkowski, Jeffrey %T Defect measures of eigenfunctions with maximal $L^\infty $ growth %J Annales de l'Institut Fourier %D 2019 %P 1757-1798 %V 69 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3281/ %R 10.5802/aif.3281 %G en %F AIF_2019__69_4_1757_0
Galkowski, Jeffrey. Defect measures of eigenfunctions with maximal $L^\infty $ growth. Annales de l'Institut Fourier, Tome 69 (2019) no. 4, pp. 1757-1798. doi : 10.5802/aif.3281. https://aif.centre-mersenne.org/articles/10.5802/aif.3281/
[1] Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten, Math. Z., Volume 65 (1956), pp. 327-344 | DOI | MR | Zbl
[2] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR | Zbl
[3] Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhäuser, 2010, xvi+343 pages | DOI | MR | Zbl
[4] Refined and microlocal Kakeya–Nikodym bounds for eigenfunctions in two dimensions, Anal. PDE, Volume 8 (2015) no. 3, pp. 747-764 | DOI | MR | Zbl
[5] Refined and Microlocal Kakeya–Nikodym Bounds of Eigenfunctions in Higher Dimensions, Commun. Math. Phys., Volume 356 (2017) no. 2, pp. 501-533 | MR | Zbl
[6] Introduction to dynamical systems, Cambridge University Press, 2002, xii+240 pages | DOI | MR | Zbl
[7] Bounds for eigenfunctions of the Laplacian on compact Riemannian manifolds, J. Funct. Anal., Volume 187 (2001) no. 1, pp. 247-261 | DOI | MR | Zbl
[8] Mathematical theory of scattering resonances (2017) (http://math.berkeley.edu/~zworski/res.pdf) | Zbl
[9] Eigenfunction scarring and improvements in bounds, Anal. PDE, Volume 11 (2017) no. 3, pp. 801-812 | DOI | MR | Zbl
[10] Lectures on analysis on metric spaces, Universitext, Springer, 2001, x+140 pages | DOI | MR | Zbl
[11] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl
[12] norms of eigenfunctions of arithmetic surfaces, Ann. Math., Volume 141 (1995) no. 2, pp. 301-320 | DOI | MR | Zbl
[13] Semiclassical estimates, Ann. Henri Poincaré, Volume 8 (2007) no. 5, pp. 885-916 | DOI | MR | Zbl
[14] On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 16 (1952), pp. 325-352 | MR
[15] Asymptotic of the spectral function of a positive elliptic operator without the nontrap condition, Funct. Anal. Appl., Volume 22 (1988) no. 3, pp. 213-223 | DOI | Zbl
[16] Concerning the norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 123-138 | MR | Zbl
[17] Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, 105, Cambridge University Press, 1993, x+237 pages | DOI | MR | Zbl
[18] Kakeya–Nikodym averages and -norms of eigenfunctions, Tôhoku Math. J., Volume 63 (2011) no. 4, pp. 519-538 | DOI | MR | Zbl
[19] About the blowup of quasimodes on Riemannian manifolds, J. Geom. Anal., Volume 21 (2011) no. 1, pp. 150-173 | DOI | MR | Zbl
[20] Riemannian manifolds with maximal eigenfunction growth, Duke Math. J., Volume 114 (2002) no. 3, pp. 387-437 | DOI | MR | Zbl
[21] Focal points and sup-norms of eigenfunctions, Rev. Mat. Iberoam., Volume 32 (2016) no. 3, pp. 971-994 | DOI | MR | Zbl
[22] Focal points and sup-norms of eigenfunctions II: the two-dimensional case, Rev. Mat. Iberoam., Volume 32 (2016) no. 3, pp. 995-999 | DOI | MR | Zbl
[23] Riemannian manifolds with uniformly bounded eigenfunctions, Duke Math. J., Volume 111 (2002) no. 1, pp. 97-132 | DOI | MR | Zbl
[24] Norms of modes and quasi-modes revisited, Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001) (Contemporary Mathematics), Volume 320, American Mathematical Society, 2003, pp. 435-458 | DOI | MR | Zbl
[25] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012, xii+431 pages | DOI | MR | Zbl
Cité par Sources :